1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
//! Rotations which exchange axes (thus not leaving the integer grid).
//! This module is private but reexported by its parent.

use std::ops::Mul;

use cgmath::{One, Vector3, Zero as _};

use crate::math::*;

/// Represents a discrete (grid-aligned) rotation, or exchange of axes.
///
/// Compared to a [`GridMatrix`], this cannot specify scale, translation, or skew;
/// it is used for identifying the rotations of blocks.
///
/// Each of the variant names specifies the three unit vectors which (*x*, *y*, *z*),
/// respectively, should be multiplied by to perform the rotation.
/// Lowercase refers to a negated unit vector.
///
/// See also:
///
/// * [`Face6`] is less general, in that it specifies a single axis but not
///   rotation about that axis.
/// * [`GridMatrix`] is more general, specifying an affine transformation.
#[rustfmt::skip]
#[allow(clippy::upper_case_acronyms)]
#[allow(clippy::exhaustive_enums)]
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[repr(u8)]
pub enum GridRotation {
    // TODO: shuffle or explicitly number these to choose a meaningful numbering
    RXYZ, RXYz, RXyZ, RXyz, RxYZ, RxYz, RxyZ, Rxyz,
    RXZY, RXZy, RXzY, RXzy, RxZY, RxZy, RxzY, Rxzy,
    RYXZ, RYXz, RYxZ, RYxz, RyXZ, RyXz, RyxZ, Ryxz,
    RYZX, RYZx, RYzX, RYzx, RyZX, RyZx, RyzX, Ryzx,
    RZXY, RZXy, RZxY, RZxy, RzXY, RzXy, RzxY, Rzxy,
    RZYX, RZYx, RZyX, RZyx, RzYX, RzYx, RzyX, Rzyx,
}

impl GridRotation {
    /// All 48 possible rotations.
    ///
    /// Warning: TODO: The ordering of these rotations is not yet stable.
    /// The current ordering is based on the six axis permutations followed by rotations.
    #[rustfmt::skip]
    pub const ALL: [Self; 48] = {
        use GridRotation::*;
        [
            RXYZ, RXYz, RXyZ, RXyz, RxYZ, RxYz, RxyZ, Rxyz,
            RXZY, RXZy, RXzY, RXzy, RxZY, RxZy, RxzY, Rxzy,
            RYXZ, RYXz, RYxZ, RYxz, RyXZ, RyXz, RyxZ, Ryxz,
            RYZX, RYZx, RYzX, RYzx, RyZX, RyZx, RyzX, Ryzx,
            RZXY, RZXy, RZxY, RZxy, RzXY, RzXy, RzxY, Rzxy,
            RZYX, RZYx, RZyX, RZyx, RzYX, RzYx, RzyX, Rzyx,
        ]
    };

    /// All possible rotations that are not reflections.
    ///
    /// Warning: TODO: The ordering of these rotations is not yet stable.
    #[rustfmt::skip]
    pub const ALL_BUT_REFLECTIONS: [Self; 24] = {
        use GridRotation::*;
        [
            RXYZ, RXyz, RxYz, RxyZ,
            RXZy, RXzY, RxZY, Rxzy,
            RYXz, RYxZ, RyXZ, Ryxz,
            RYZX, RYzx, RyZx, RyzX,
            RZXY, RZxy, RzXy, RzxY,
            RZYx, RZyX, RzYX, Rzyx,
        ]
    };

    pub const IDENTITY: Self = Self::RXYZ;

    /// The rotation that is clockwise in our Y-up right-handed coordinate system.
    ///
    /// ```
    /// use all_is_cubes::math::{Face6::*, GridRotation};
    ///
    /// assert_eq!(GridRotation::CLOCKWISE.transform(PX), PZ);
    /// assert_eq!(GridRotation::CLOCKWISE.transform(PZ), NX);
    /// assert_eq!(GridRotation::CLOCKWISE.transform(NX), NZ);
    /// assert_eq!(GridRotation::CLOCKWISE.transform(NZ), PX);
    ///
    /// assert_eq!(GridRotation::CLOCKWISE.transform(PY), PY);
    /// ```
    pub const CLOCKWISE: Self = Self::RZYx;

    /// The rotation that is counterclockwise in our Y-up right-handed coordinate system.
    ///
    /// ```
    /// use all_is_cubes::math::{Face6::*, GridRotation};
    ///
    /// assert_eq!(GridRotation::COUNTERCLOCKWISE.transform(PX), NZ);
    /// assert_eq!(GridRotation::COUNTERCLOCKWISE.transform(NZ), NX);
    /// assert_eq!(GridRotation::COUNTERCLOCKWISE.transform(NX), PZ);
    /// assert_eq!(GridRotation::COUNTERCLOCKWISE.transform(PZ), PX);
    ///
    /// assert_eq!(GridRotation::COUNTERCLOCKWISE.transform(PY), PY);
    /// ```
    pub const COUNTERCLOCKWISE: Self = Self::RzYX;

    /// Constructs a rotation from a basis: that is, the returned rotation will
    /// rotate `PX` into `basis[0]`, `PY` into `basis[1]`, and `PZ` into `basis[2]`.
    ///
    /// Panics if the three provided axes are not mutually perpendicular.
    #[inline]
    pub fn from_basis(basis: impl Into<Vector3<Face6>>) -> Self {
        Self::from_basis_impl(basis.into())
    }

    fn from_basis_impl(basis: Vector3<Face6>) -> Self {
        let basis: [Face6; 3] = basis.into(); // for concise matching
        use {Face6::*, GridRotation::*};
        match basis {
            [PX, PY, PZ] => RXYZ,
            [PX, PZ, PY] => RXZY,
            [PY, PX, PZ] => RYXZ,
            [PY, PZ, PX] => RYZX,
            [PZ, PX, PY] => RZXY,
            [PZ, PY, PX] => RZYX,

            [PX, PY, NZ] => RXYz,
            [PX, PZ, NY] => RXZy,
            [PY, PX, NZ] => RYXz,
            [PY, PZ, NX] => RYZx,
            [PZ, PX, NY] => RZXy,
            [PZ, PY, NX] => RZYx,

            [PX, NY, PZ] => RXyZ,
            [PX, NZ, PY] => RXzY,
            [PY, NX, PZ] => RYxZ,
            [PY, NZ, PX] => RYzX,
            [PZ, NX, PY] => RZxY,
            [PZ, NY, PX] => RZyX,

            [PX, NY, NZ] => RXyz,
            [PX, NZ, NY] => RXzy,
            [PY, NX, NZ] => RYxz,
            [PY, NZ, NX] => RYzx,
            [PZ, NX, NY] => RZxy,
            [PZ, NY, NX] => RZyx,

            [NX, PY, PZ] => RxYZ,
            [NX, PZ, PY] => RxZY,
            [NY, PX, PZ] => RyXZ,
            [NY, PZ, PX] => RyZX,
            [NZ, PX, PY] => RzXY,
            [NZ, PY, PX] => RzYX,

            [NX, PY, NZ] => RxYz,
            [NX, PZ, NY] => RxZy,
            [NY, PX, NZ] => RyXz,
            [NY, PZ, NX] => RyZx,
            [NZ, PX, NY] => RzXy,
            [NZ, PY, NX] => RzYx,

            [NX, NY, PZ] => RxyZ,
            [NX, NZ, PY] => RxzY,
            [NY, NX, PZ] => RyxZ,
            [NY, NZ, PX] => RyzX,
            [NZ, NX, PY] => RzxY,
            [NZ, NY, PX] => RzyX,

            [NX, NY, NZ] => Rxyz,
            [NX, NZ, NY] => Rxzy,
            [NY, NX, NZ] => Ryxz,
            [NY, NZ, NX] => Ryzx,
            [NZ, NX, NY] => Rzxy,
            [NZ, NY, NX] => Rzyx,

            _ => panic!(
                "Invalid basis given to GridRotation::from_basis: {:?}",
                basis
            ),
        }
    }

    /// Find the rotation (without reflection) which rotates `source` to `destination`.
    /// and leaves `up` unaffected. (This might also be considered a “look at” operation).
    ///
    /// If it is not possible to leave `up` unaffected, returns [`None`]. (Trying two
    /// perpendicular `up` directions will always succeed.)
    pub fn from_to(source: Face6, destination: Face6, up: Face6) -> Option<Self> {
        let perpendicular = source.cross(up);
        if source == destination {
            Some(Self::IDENTITY)
        } else if let Ok(perpendicular) = Face6::try_from(perpendicular) {
            // Find rotation from the frame source=NZ up=PY to the actual given one.
            let canonical_to_given = Self::from_basis([perpendicular, up, source.opposite()]);
            let given_to_canonical = canonical_to_given.inverse();
            debug_assert!(!canonical_to_given.is_reflection());

            // The destination expressed in that frame.
            let canonical_destination = given_to_canonical.transform(destination);
            // Find which of the four rotations in a plane matches.
            use Face6::*;
            let canonical_rotation = match canonical_destination {
                NY | PY => {
                    // Tried to rotate into the up vector.
                    return None;
                }
                NZ => Self::IDENTITY,
                PX => Self::CLOCKWISE,
                PZ => Self::RxYz,
                NX => Self::COUNTERCLOCKWISE,
            };
            // Transform that rotation into the given frame.
            Some(canonical_to_given * canonical_rotation * given_to_canonical)
        } else {
            // perpendicular == Face7::Within, therefore
            // up was parallel to source, or one of them was Within.
            None
        }
    }

    // TODO: public? do we want this to be our API? should this also be a From impl?
    #[inline]
    #[rustfmt::skip] // dense data layout
    pub(crate) const fn to_basis(self) -> Vector3<Face6> {
        use {Face6::*, GridRotation::*};
        match self {
            RXYZ => Vector3 { x: PX, y: PY, z: PZ },
            RXZY => Vector3 { x: PX, y: PZ, z: PY },
            RYXZ => Vector3 { x: PY, y: PX, z: PZ },
            RYZX => Vector3 { x: PY, y: PZ, z: PX },
            RZXY => Vector3 { x: PZ, y: PX, z: PY },
            RZYX => Vector3 { x: PZ, y: PY, z: PX },

            RXYz => Vector3 { x: PX, y: PY, z: NZ },
            RXZy => Vector3 { x: PX, y: PZ, z: NY },
            RYXz => Vector3 { x: PY, y: PX, z: NZ },
            RYZx => Vector3 { x: PY, y: PZ, z: NX },
            RZXy => Vector3 { x: PZ, y: PX, z: NY },
            RZYx => Vector3 { x: PZ, y: PY, z: NX },

            RXyZ => Vector3 { x: PX, y: NY, z: PZ },
            RXzY => Vector3 { x: PX, y: NZ, z: PY },
            RYxZ => Vector3 { x: PY, y: NX, z: PZ },
            RYzX => Vector3 { x: PY, y: NZ, z: PX },
            RZxY => Vector3 { x: PZ, y: NX, z: PY },
            RZyX => Vector3 { x: PZ, y: NY, z: PX },

            RXyz => Vector3 { x: PX, y: NY, z: NZ },
            RXzy => Vector3 { x: PX, y: NZ, z: NY },
            RYxz => Vector3 { x: PY, y: NX, z: NZ },
            RYzx => Vector3 { x: PY, y: NZ, z: NX },
            RZxy => Vector3 { x: PZ, y: NX, z: NY },
            RZyx => Vector3 { x: PZ, y: NY, z: NX },

            RxYZ => Vector3 { x: NX, y: PY, z: PZ },
            RxZY => Vector3 { x: NX, y: PZ, z: PY },
            RyXZ => Vector3 { x: NY, y: PX, z: PZ },
            RyZX => Vector3 { x: NY, y: PZ, z: PX },
            RzXY => Vector3 { x: NZ, y: PX, z: PY },
            RzYX => Vector3 { x: NZ, y: PY, z: PX },

            RxYz => Vector3 { x: NX, y: PY, z: NZ },
            RxZy => Vector3 { x: NX, y: PZ, z: NY },
            RyXz => Vector3 { x: NY, y: PX, z: NZ },
            RyZx => Vector3 { x: NY, y: PZ, z: NX },
            RzXy => Vector3 { x: NZ, y: PX, z: NY },
            RzYx => Vector3 { x: NZ, y: PY, z: NX },

            RxyZ => Vector3 { x: NX, y: NY, z: PZ },
            RxzY => Vector3 { x: NX, y: NZ, z: PY },
            RyxZ => Vector3 { x: NY, y: NX, z: PZ },
            RyzX => Vector3 { x: NY, y: NZ, z: PX },
            RzxY => Vector3 { x: NZ, y: NX, z: PY },
            RzyX => Vector3 { x: NZ, y: NY, z: PX },

            Rxyz => Vector3 { x: NX, y: NY, z: NZ },
            Rxzy => Vector3 { x: NX, y: NZ, z: NY },
            Ryxz => Vector3 { x: NY, y: NX, z: NZ },
            Ryzx => Vector3 { x: NY, y: NZ, z: NX },
            Rzxy => Vector3 { x: NZ, y: NX, z: NY },
            Rzyx => Vector3 { x: NZ, y: NY, z: NX },
        }
    }

    /// Expresses this rotation as a matrix which rotates “in place” the
    /// points within the volume defined by coordinates in the range [0, size].
    ///
    /// That is, a [`GridAab`] of that volume will be unchanged by rotation:
    ///
    /// ```
    /// use all_is_cubes::block::Resolution;
    /// use all_is_cubes::math::{GridAab, GridRotation};
    ///
    /// let b = GridAab::for_block(Resolution::R8);
    /// let rotation = GridRotation::CLOCKWISE.to_positive_octant_matrix(8);
    /// assert_eq!(b.transform(rotation), Some(b));
    /// ```
    ///
    /// Such matrices are suitable for rotating the voxels of a block, provided
    /// that the coordinates are then transformed with [`GridMatrix::transform_cube`],
    /// *not* [`GridMatrix::transform_point`](cgmath::Transform::transform_point)
    /// (due to the lower-corner format of cube coordinates).
    /// ```
    /// # use all_is_cubes::math::{GridAab, GridPoint, GridRotation};
    /// let rotation = GridRotation::CLOCKWISE.to_positive_octant_matrix(4);
    /// assert_eq!(rotation.transform_cube(GridPoint::new(0, 0, 0)), GridPoint::new(3, 0, 0));
    /// assert_eq!(rotation.transform_cube(GridPoint::new(3, 0, 0)), GridPoint::new(3, 0, 3));
    /// assert_eq!(rotation.transform_cube(GridPoint::new(3, 0, 3)), GridPoint::new(0, 0, 3));
    /// assert_eq!(rotation.transform_cube(GridPoint::new(0, 0, 3)), GridPoint::new(0, 0, 0));
    /// ```
    ///
    // TODO: add tests
    pub fn to_positive_octant_matrix(self, size: GridCoordinate) -> GridMatrix {
        fn offset(face: Face6, size: GridCoordinate) -> GridVector {
            if face.is_positive() {
                GridVector::zero()
            } else {
                face.normal_vector() * -size
            }
        }
        let basis = self.to_basis();
        GridMatrix {
            x: basis.x.normal_vector(),
            y: basis.y.normal_vector(),
            z: basis.z.normal_vector(),
            w: offset(basis.x, size) + offset(basis.y, size) + offset(basis.z, size),
        }
    }

    /// Expresses this rotation as a matrix without any translation.
    // TODO: add tests
    pub fn to_rotation_matrix(self) -> GridMatrix {
        self.to_positive_octant_matrix(0)
    }

    // TODO: test equivalence with matrix
    #[inline]
    pub fn transform(self, face: Face6) -> Face6 {
        // TODO: there ought to be a much cleaner way to express this
        // ... and it should be a const fn, too
        let p = self.to_basis()[face.axis_number()];
        if face.is_negative() {
            p.opposite()
        } else {
            p
        }
    }

    /// Returns whether this is a reflection.
    ///
    /// ```
    /// use all_is_cubes::math::{GridRotation, Face6::*};
    ///
    /// assert!(!GridRotation::IDENTITY.is_reflection());
    /// assert!(!GridRotation::from_basis([PX, PZ, NY]).is_reflection());
    /// assert!(GridRotation::from_basis([PX, PZ, PY]).is_reflection());
    /// ```
    #[inline]
    pub const fn is_reflection(self) -> bool {
        // In a coordinate system of the *same handedness*, the cross product computes
        // the same

        let Vector3 { x, y, z } = self.to_basis();
        // u8 casts are a kludge to make == work as a const fn.
        x.cross(y) as u8 != z as u8
    }

    /// Returns the inverse of this rotation; the one which undoes this.
    ///
    /// ```
    /// use all_is_cubes::math::GridRotation;
    ///
    /// for &rotation in &GridRotation::ALL {
    ///     assert_eq!(rotation * rotation.inverse(), GridRotation::IDENTITY);
    /// }
    /// ```
    #[must_use]
    pub fn inverse(self) -> Self {
        // TODO: Make this more efficient. Can we do it without writing out another 48-element match?
        self.iterate().last().unwrap()
    }

    /// Generates the sequence of rotations that may be obtained by concatenating/multiplying
    /// this rotation with itself repeatedly.
    ///
    /// The first element of the iterator will always be the identity, i.e. this rotation
    /// applied zero times. The iterator ends when the sequence would repeat itself, i.e.
    /// just before it would produce the identity again.
    ///
    /// ```
    /// use all_is_cubes::math::Face6::*;
    /// use all_is_cubes::math::GridRotation;
    ///
    /// assert_eq!(
    ///     GridRotation::IDENTITY.iterate().collect::<Vec<_>>(),
    ///     vec![GridRotation::IDENTITY],
    /// );
    ///
    /// let x_reflection = GridRotation::from_basis([NX, PY, PZ]);
    /// assert_eq!(
    ///     x_reflection.iterate().collect::<Vec<_>>(),
    ///     vec![GridRotation::IDENTITY, x_reflection],
    /// );
    ///
    /// assert_eq!(
    ///     GridRotation::CLOCKWISE.iterate().collect::<Vec<_>>(),
    ///     vec![
    ///         GridRotation::IDENTITY,
    ///         GridRotation::CLOCKWISE,
    ///         GridRotation::CLOCKWISE * GridRotation::CLOCKWISE,
    ///         GridRotation::COUNTERCLOCKWISE,
    ///    ],
    /// );
    /// ```
    pub fn iterate(self) -> impl Iterator<Item = Self> {
        let mut item = Self::IDENTITY;
        std::iter::once(Self::IDENTITY).chain(std::iter::from_fn(move || {
            item = item * self;
            if item == Self::IDENTITY {
                // Cycled back to start; time to stop
                None
            } else {
                Some(item)
            }
        }))
    }
}

impl Default for GridRotation {
    /// Returns the identity (no rotation).
    #[inline]
    fn default() -> Self {
        Self::IDENTITY
    }
}

impl One for GridRotation {
    /// Returns the identity (no rotation).
    #[inline]
    fn one() -> Self {
        Self::IDENTITY
    }
}

impl Mul<Self> for GridRotation {
    type Output = Self;

    /// Multiplication is concatenation: `self * rhs` is equivalent to
    /// applying `rhs` and then applying `self`.
    /// ```
    /// use all_is_cubes::math::{Face6, Face6::*, GridRotation, GridPoint};
    ///
    /// let transform_1 = GridRotation::from_basis([NY, PX, PZ]);
    /// let transform_2 = GridRotation::from_basis([PY, PZ, PX]);
    ///
    /// // Demonstrate the directionality of concatenation.
    /// for face in Face6::ALL {
    ///     assert_eq!(
    ///         (transform_1 * transform_2).transform(face),
    ///         transform_1.transform(transform_2.transform(face)),
    ///     );
    /// }
    /// ```
    #[inline]
    fn mul(self, rhs: Self) -> Self::Output {
        Self::from_basis(rhs.to_basis().map(|v| self.transform(v)))
    }
}

// TODO: consider implementing cgmath::Transform for GridRotation.

#[cfg(test)]
mod tests {
    use std::collections::HashSet;

    use super::*;
    use Face6::*;

    #[test]
    fn identity() {
        assert_eq!(GridRotation::IDENTITY, GridRotation::one());
        assert_eq!(GridRotation::IDENTITY, GridRotation::default());
        assert_eq!(
            GridRotation::IDENTITY,
            GridRotation::from_basis([PX, PY, PZ])
        );
    }

    #[test]
    fn ccw_cw() {
        assert_eq!(
            GridRotation::IDENTITY,
            GridRotation::COUNTERCLOCKWISE * GridRotation::CLOCKWISE
        );
    }

    #[test]
    fn is_reflection_consistency() {
        for a in GridRotation::ALL {
            for b in GridRotation::ALL {
                assert_eq!(
                    a.is_reflection() ^ b.is_reflection(),
                    (a * b).is_reflection(),
                    "{:?}, {:?}",
                    a,
                    b,
                );
            }
        }
    }

    /// Test that `GridRotation::ALL` is complete.
    /// TODO: Also test numbering/ordering properties when that is stable.
    #[test]
    fn enumeration() {
        let mut set = HashSet::new();
        for rot in GridRotation::ALL {
            set.insert(rot);
        }
        assert_eq!(set.len(), GridRotation::ALL.len());
        assert_eq!(48, GridRotation::ALL.len());
    }

    /// Test that `GridRotation::ALL_BUT_REFLECTIONS` is complete.
    #[test]
    fn all_but_reflections() {
        let mut set = HashSet::new();
        for rot in GridRotation::ALL_BUT_REFLECTIONS {
            assert!(!rot.is_reflection(), "{rot:?} is a reflection");
            set.insert(rot);
        }
        assert_eq!(set.len(), GridRotation::ALL_BUT_REFLECTIONS.len());
        // Half of all possible axis transformations have no reflection
        assert_eq!(
            GridRotation::ALL.len(),
            GridRotation::ALL_BUT_REFLECTIONS.len() * 2,
        );
    }

    /// The set of possible inputs is small enough to test its properties exhaustively
    #[test]
    fn from_to_exhaustive() {
        for from_face in Face6::ALL {
            for to_face in Face6::ALL {
                for up_face in Face6::ALL {
                    let result = GridRotation::from_to(from_face, to_face, up_face);
                    let info = (from_face, to_face, up_face, result);
                    match result {
                        Some(result) => {
                            assert!(!result.is_reflection());
                            assert_eq!(
                                result.transform(from_face),
                                to_face,
                                "wrong from-to: {:?}",
                                info
                            );
                            assert_eq!(
                                result.transform(up_face),
                                up_face,
                                "did not preserve up vector: {:?}",
                                info
                            );
                        }
                        None => {
                            assert!(
                                up_face.axis_number() == from_face.axis_number()
                                    || up_face.axis_number() == to_face.axis_number(),
                                "returned None incorrectly: {:?}",
                                info
                            );
                        }
                    }
                }
            }
        }
    }
}