aligned_buffer/unique.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
use crate::{
alloc::{BufferAllocator, Global},
cap::Cap,
raw::{RawAlignedBuffer, RawBufferError},
SharedAlignedBuffer, DEFAULT_BUFFER_ALIGNMENT,
};
use core::fmt;
use std::{
cmp, ops,
ptr::{self, NonNull},
slice::SliceIndex,
};
#[derive(Debug, thiserror::Error)]
#[error("failed to reserve capacity")]
pub struct TryReserveError {
#[source]
source: Box<RawBufferError>,
}
impl From<RawBufferError> for TryReserveError {
#[inline]
fn from(source: RawBufferError) -> Self {
Self {
source: Box::new(source),
}
}
}
/// A unique (owned) aligned buffer. This can be used to write data to the buffer,
/// before converting it to a [`SharedAlignedBuffer`] to get cheap clones and sharing
/// of the buffer data. This type is effectively a `Vec<u8>` with a custom alignment.
///
/// [`SharedAlignedBuffer`]: crate::SharedAlignedBuffer
pub struct UniqueAlignedBuffer<const ALIGNMENT: usize = DEFAULT_BUFFER_ALIGNMENT, A = Global>
where
A: BufferAllocator<ALIGNMENT>,
{
pub(crate) buf: RawAlignedBuffer<ALIGNMENT, A>,
pub(crate) len: usize,
}
impl<const ALIGNMENT: usize> UniqueAlignedBuffer<ALIGNMENT> {
/// Constructs a new, empty `UniqueAlignedBuffer`.
///
/// The buffer will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// # #![allow(unused_mut)]
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::new();
/// ```
#[inline]
#[must_use]
pub const fn new() -> Self {
Self::new_in(Global)
}
/// Constructs a new, empty `UniqueAlignedBuffer` with at least the specified capacity.
///
/// The buffer will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// minimum *capacity* specified, the vector will have a zero *length*. For
/// an explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// If it is important to know the exact allocated capacity of a `UniqueAlignedBuffer`,
/// always use the [`capacity`] method after construction.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
/// [`capacity`]: UniqueAlignedBuffer::capacity
///
/// # Panics
///
/// Panics if the new capacity is too large.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity(10);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(buf.len(), 0);
/// assert!(buf.capacity() >= 10);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// buf.push(i);
/// }
/// assert_eq!(buf.len(), 10);
/// assert!(buf.capacity() >= 10);
///
/// // ...but this may make the vector reallocate
/// buf.push(11);
/// assert_eq!(buf.len(), 11);
/// assert!(buf.capacity() >= 11);
/// ```
#[inline]
#[must_use]
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_in(capacity, Global)
}
/// Decomposes a `UniqueAlignedBuffer` into its raw components.
///
/// Returns the raw pointer to the underlying data, the length of
/// the buffer, and the allocated capacity of the buffer.
/// These are the same arguments in the same
/// order as the arguments to [`from_raw_parts`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `UniqueAlignedBuffer`. The only
/// ways to do this are to convert the raw pointer, length, and capacity
/// back into a `UniqueAlignedBuffer` with the [`from_raw_parts`] function.
///
/// Note that it is valid to shrink the length of the buffer (even set it
/// to zero) and call `from_raw_parts` with the reduced length. This is
/// effectively the same as calling [`truncate`] or [`set_len`].
///
/// [`from_raw_parts`]: UniqueAlignedBuffer::from_raw_parts
/// [`truncate`]: UniqueAlignedBuffer::truncate
/// [`set_len`]: UniqueAlignedBuffer::set_len
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity(10);
/// buf.extend([1, 2, 3]);
///
/// assert_eq!(&*buf, &[1, 2, 3]);
/// let (ptr, len, cap) = buf.into_raw_parts();
///
/// let rebuilt = unsafe {
/// UniqueAlignedBuffer::<32>::from_raw_parts(ptr, 2, cap)
/// };
/// assert_eq!(&*rebuilt, &[1, 2]);
/// ```
pub fn into_raw_parts(self) -> (NonNull<u8>, usize, Cap) {
let (ptr, cap) = self.buf.into_raw_parts();
(ptr, self.len, cap)
}
/// Creates a `UniqueAlignedBuffer` directly from a pointer, a capacity, and a length.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` must have been allocated using the global allocator, such as via
/// the [`alloc::alloc`] function.
/// * `ptr` needs to be correctly offset into the allocation based on `ALIGNMENT`.
/// * `ptr` needs to point to an allocation with the correct size.
/// * In front of `ptr` there is a valid `RawAlignedBuffer` header.
/// * `length` needs to be less than or equal to `capacity`.
/// * The first `length` bytes must be properly initialized.
/// * `capacity` needs to be the capacity that the pointer was allocated with.
/// * The allocated size in bytes must be no larger than `isize::MAX`.
/// See the safety documentation of `pointer::offset`.
///
/// These requirements are always upheld by any `ptr` that has been allocated
/// via `UniqueAlignedBuffer`. Other allocation sources are allowed if the invariants are
/// upheld.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is normally **not** safe
/// to build a `UniqueAlignedBuffer` from a pointer to a C `char` array with length
/// `size_t`, doing so is only safe if the array was initially allocated by
/// a `UniqueAlignedBuffer`.
///
/// The ownership of `ptr` is effectively transferred to the
/// `UniqueAlignedBuffer` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`alloc::alloc`]: std::alloc::alloc
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity(10);
/// buf.extend([1, 2, 3]);
///
/// assert_eq!(&*buf, &[1, 2, 3]);
/// let (ptr, len, cap) = buf.into_raw_parts();
///
/// let rebuilt = unsafe {
/// UniqueAlignedBuffer::<32>::from_raw_parts(ptr, 2, cap)
/// };
/// assert_eq!(&*rebuilt, &[1, 2]);
/// ```
#[inline]
pub unsafe fn from_raw_parts(ptr: NonNull<u8>, len: usize, capacity: Cap) -> Self {
let buf = RawAlignedBuffer::from_raw_parts(ptr, capacity);
Self { buf, len }
}
}
impl<const ALIGNMENT: usize, A> UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
/// Constructs a new, empty `UniqueAlignedBuffer`.
///
/// The buffer will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// # #![allow(unused_mut)]
/// # use aligned_buffer::{UniqueAlignedBuffer, alloc::Global};
/// let mut buf = UniqueAlignedBuffer::<32>::new_in(Global);
/// ```
#[inline]
#[must_use]
pub const fn new_in(alloc: A) -> Self {
let buf = RawAlignedBuffer::new_in(alloc);
Self { buf, len: 0 }
}
/// Constructs a new, empty `UniqueAlignedBuffer` with at least the specified capacity.
///
/// The buffer will be able to hold at least `capacity` elements without
/// reallocating. This method is allowed to allocate for more elements than
/// `capacity`. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// minimum *capacity* specified, the vector will have a zero *length*. For
/// an explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// If it is important to know the exact allocated capacity of a `UniqueAlignedBuffer`,
/// always use the [`capacity`] method after construction.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
/// [`capacity`]: UniqueAlignedBuffer::capacity
///
/// # Panics
///
/// Panics if the new capacity is too large.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::{UniqueAlignedBuffer, alloc::Global};
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity_in(10, Global);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(buf.len(), 0);
/// assert!(buf.capacity() >= 10);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// buf.push(i);
/// }
/// assert_eq!(buf.len(), 10);
/// assert!(buf.capacity() >= 10);
///
/// // ...but this may make the vector reallocate
/// buf.push(11);
/// assert_eq!(buf.len(), 11);
/// assert!(buf.capacity() >= 11);
/// ```
#[inline]
#[must_use]
pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
let buf = RawAlignedBuffer::with_capacity_in(capacity, alloc);
Self { buf, len: 0 }
}
/// Decomposes a `UniqueAlignedBuffer` into its raw components.
///
/// Returns the raw pointer to the underlying data, the length of
/// the buffer, and the allocated capacity of the buffer.
/// These are the same arguments in the same
/// order as the arguments to [`from_raw_parts_in`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `UniqueAlignedBuffer`. The only
/// ways to do this are to convert the raw pointer, length, and capacity
/// back into a `UniqueAlignedBuffer` with the [`from_raw_parts`] function.
///
/// Note that it is valid to shrink the length of the buffer (even set it
/// to zero) and call `from_raw_parts` with the reduced length. This is
/// effectively the same as calling [`truncate`] or [`set_len`].
///
/// [`from_raw_parts_in`]: UniqueAlignedBuffer::from_raw_parts_in
/// [`from_raw_parts`]: UniqueAlignedBuffer::from_raw_parts
/// [`truncate`]: UniqueAlignedBuffer::truncate
/// [`set_len`]: UniqueAlignedBuffer::set_len
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity(10);
/// buf.extend([1, 2, 3]);
///
/// assert_eq!(&*buf, &[1, 2, 3]);
/// let (ptr, len, cap, alloc) = buf.into_raw_parts_with_alloc();
///
/// let rebuilt = unsafe {
/// UniqueAlignedBuffer::<32>::from_raw_parts_in(ptr, 2, cap, alloc)
/// };
/// assert_eq!(&*rebuilt, &[1, 2]);
/// ```
pub fn into_raw_parts_with_alloc(self) -> (NonNull<u8>, usize, Cap, A) {
let (ptr, cap, alloc) = self.buf.into_raw_parts_with_alloc();
(ptr, self.len, cap, alloc)
}
/// Creates a `UniqueAlignedBuffer` directly from a pointer, a capacity, and a length.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` must have been allocated using the global allocator, such as via
/// the [`alloc::alloc`] function.
/// * `ptr` needs to be correctly offset into the allocation based on `ALIGNMENT`.
/// * `ptr` needs to point to an allocation with the correct size.
/// * In front of `ptr` there is a valid `RawAlignedBuffer` header.
/// * `length` needs to be less than or equal to `capacity`.
/// * The first `length` bytes must be properly initialized.
/// * `capacity` needs to be the capacity that the pointer was allocated with.
/// * The allocated size in bytes must be no larger than `isize::MAX`.
/// See the safety documentation of `pointer::offset`.
///
/// These requirements are always upheld by any `ptr` that has been allocated
/// via `UniqueAlignedBuffer`. Other allocation sources are allowed if the invariants are
/// upheld.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is normally **not** safe
/// to build a `UniqueAlignedBuffer` from a pointer to a C `char` array with length
/// `size_t`, doing so is only safe if the array was initially allocated by
/// a `UniqueAlignedBuffer`.
///
/// The ownership of `ptr` is effectively transferred to the
/// `UniqueAlignedBuffer` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`alloc::alloc`]: std::alloc::alloc
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity(10);
/// buf.extend([1, 2, 3]);
///
/// assert_eq!(&*buf, &[1, 2, 3]);
/// let (ptr, len, cap, alloc) = buf.into_raw_parts_with_alloc();
///
/// let rebuilt = unsafe {
/// UniqueAlignedBuffer::<32>::from_raw_parts_in(ptr, 2, cap, alloc)
/// };
/// assert_eq!(&*rebuilt, &[1, 2]);
/// ```
#[inline]
pub unsafe fn from_raw_parts_in(ptr: NonNull<u8>, len: usize, capacity: Cap, alloc: A) -> Self {
let buf = RawAlignedBuffer::from_raw_parts_in(ptr, capacity, alloc);
Self { buf, len }
}
/// Returns the total number of elements the buffer can hold without
/// reallocating.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity(10);
/// buf.push(42);
/// assert!(buf.capacity() >= 10);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
// when the buffer is owned (unique), cap_or_len is the capacity
self.buf.cap_or_len()
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the given `UniqueAlignedBuffer`. The collection may reserve more space to
/// speculatively avoid frequent reallocations. After calling `reserve`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity is too large.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity(10);
/// buf.reserve(20);
/// assert!(buf.capacity() >= 20);
/// ```
pub fn reserve(&mut self, additional: usize) {
// SAFETY: We're the unieue owner of the buffer.
unsafe {
self.buf.reserve(self.len, additional);
}
}
/// Reserves the minimum capacity for at least `additional` more elements to
/// be inserted in the given `UniqueAlignedBuffer`. Unlike [`reserve`], this will not
/// deliberately over-allocate to speculatively avoid frequent allocations.
/// After calling `reserve_exact`, capacity will be greater than or equal to
/// `self.len() + additional`. Does nothing if the capacity is already
/// sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`reserve`] if future insertions are expected.
///
/// [`reserve`]: UniqueAlignedBuffer::reserve
///
/// # Panics
///
/// Panics if the new capacity is too large.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<32>::with_capacity(10);
/// buf.reserve_exact(20);
/// assert!(buf.capacity() >= 20);
/// ```
pub fn reserve_exact(&mut self, additional: usize) {
// SAFETY: We're the unieue owner of the buffer.
unsafe {
self.buf.reserve_exact(self.len, additional);
}
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `UniqueAlignedBuffer`. The collection may reserve more space to speculatively avoid
/// frequent reallocations. After calling `try_reserve`, capacity will be
/// greater than or equal to `self.len() + additional` if it returns
/// `Ok(())`. Does nothing if capacity is already sufficient. This method
/// preserves the contents even if an error occurs.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// # use aligned_buffer::TryReserveError;
/// fn process_data(data: &[u32]) -> Result<UniqueAlignedBuffer<64>, TryReserveError> {
/// let mut output = UniqueAlignedBuffer::<64>::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len() * std::mem::size_of::<u32>())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().flat_map(|&val| {
/// u32::to_le_bytes(val * 2 + 5) // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
// SAFETY: We're the unieue owner of the buffer.
unsafe {
self
.buf
.try_reserve(self.len, additional)
.map_err(TryReserveError::from)
}
}
/// Tries to reserve the minimum capacity for at least `additional`
/// elements to be inserted in the given `UniqueAlignedBuffer`. Unlike [`try_reserve`],
/// this will not deliberately over-allocate to speculatively avoid frequent
/// allocations. After calling `try_reserve_exact`, capacity will be greater
/// than or equal to `self.len() + additional` if it returns `Ok(())`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`try_reserve`] if future insertions are expected.
///
/// [`try_reserve`]: Vec::try_reserve
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// # use aligned_buffer::TryReserveError;
///
/// fn process_data(data: &[u32]) -> Result<UniqueAlignedBuffer<64>, TryReserveError> {
/// let mut output = UniqueAlignedBuffer::<64>::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve_exact(data.len() * std::mem::size_of::<u32>())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().flat_map(|&val| {
/// u32::to_le_bytes(val * 2 + 5) // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
// SAFETY: We're the unieue owner of the buffer.
unsafe {
self
.buf
.try_reserve_exact(self.len, additional)
.map_err(TryReserveError::from)
}
}
/// Shrinks the capacity of the buffer as much as possible.
///
/// It will drop down as close as possible to the length but the allocator
/// may still inform the buffer that there is space for a few more elements.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3]);
/// assert!(buf.capacity() >= 10);
/// buf.shrink_to_fit();
/// assert!(buf.capacity() >= 3);
/// ```
pub fn shrink_to_fit(&mut self) {
// The capacity is never less than the length, and there's nothing to do when
// they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
// by only calling it with a greater capacity.
if self.capacity() > self.len {
// SAFETY: We're the unieue owner of the buffer.
unsafe {
self.buf.shrink_to_fit(self.len);
}
}
}
/// Shrinks the capacity of the buffer with a lower bound.
///
/// The capacity will remain at least as large as both the length
/// and the supplied value.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3]);
/// assert!(buf.capacity() >= 10);
/// buf.shrink_to(4);
/// assert!(buf.capacity() >= 4);
/// buf.shrink_to(0);
/// assert!(buf.capacity() >= 3);
/// ```
pub fn shrink_to(&mut self, min_capacity: usize) {
if self.capacity() > min_capacity {
// SAFETY: We're the unieue owner of the buffer.
unsafe {
self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
}
}
}
/// Shortens the buffer, keeping the first `len` elements and dropping
/// the rest.
///
/// If `len` is greater or equal to the vector's current length, this has
/// no effect.
///
/// Note that this method has no effect on the allocated capacity
/// of the buffer.
///
/// # Examples
///
/// Truncating a five element buffer to two elements:
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3, 4, 5]);
/// buf.truncate(2);
/// assert_eq!(&*buf, &[1, 2]);
/// ```
///
/// No truncation occurs when `len` is greater than the vector's current
/// length:
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3, 4, 5]);
/// buf.truncate(8);
/// assert_eq!(&*buf, &[1, 2, 3, 4, 5]);
/// ```
///
/// Truncating when `len == 0` is equivalent to calling the [`clear`]
/// method.
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3, 4, 5]);
/// buf.truncate(0);
/// assert_eq!(&*buf, &[]);
/// assert!(buf.is_empty());
/// ```
///
/// [`clear`]: UniqueAlignedBuffer::clear
pub fn truncate(&mut self, len: usize) {
// Since we're dealing with plain old data, we can just change the len
// without having to drop anything.
self.len = cmp::min(len, self.len);
}
/// Extracts a slice containing the entire buffer.
///
/// Equivalent to `&s[..]`.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// use std::io::{self, Write};
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3, 5, 8]);
/// io::sink().write(buf.as_slice()).unwrap();
/// ```
#[inline]
pub fn as_slice(&self) -> &[u8] {
self
}
/// Extracts a mutable slice of the entire buffer.
///
/// Equivalent to `&mut s[..]`.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// use std::io::{self, Read};
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([0; 3]);
/// io::repeat(0b101).read_exact(buf.as_mut_slice()).unwrap();
/// ```
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [u8] {
self
}
/// Returns a raw pointer to the buffer's data, or a dangling raw pointer
/// valid for zero sized reads if the vector didn't allocate.
///
/// The caller must ensure that the buffer outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the buffer may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to
/// is never written to using this pointer or any pointer derived from it. If you need to
/// mutate the contents of the slice, use [`as_mut_ptr`].
///
/// This method guarantees that for the purpose of the aliasing model, this method
/// does not materialize a reference to the underlying slice, and thus the returned pointer
/// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
/// Note that calling other methods that materialize mutable references to the slice,
/// or mutable references to specific elements you are planning on accessing through this pointer,
/// as well as writing to those elements, may still invalidate this pointer.
/// See the second example below for how this guarantee can be used.
///
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 4]);
/// let buf_ptr = buf.as_ptr();
///
/// unsafe {
/// for i in 0..buf.len() {
/// assert_eq!(*buf_ptr.add(i), 1 << i);
/// }
/// }
/// ```
///
/// Due to the aliasing guarantee, the following code is legal:
///
/// ```rust
/// # use aligned_buffer::UniqueAlignedBuffer;
/// unsafe {
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 4]);
/// let ptr1 = buf.as_ptr();
/// let _ = ptr1.read();
/// let ptr2 = buf.as_mut_ptr().offset(2);
/// ptr2.write(2);
/// // Notably, the write to `ptr2` did *not* invalidate `ptr1`
/// // because it mutated a different element:
/// let _ = ptr1.read();
/// }
/// ```
///
/// [`as_mut_ptr`]: UniqueAlignedBuffer::as_mut_ptr
/// [`as_ptr`]: UniqueAlignedBuffer::as_ptr
#[inline]
pub fn as_ptr(&self) -> *const u8 {
// We shadow the slice method of the same name to avoid going through
// `deref`, which creates an intermediate reference.
self.buf.ptr()
}
/// Returns an unsafe mutable pointer to the buffer's data, or a dangling
/// raw pointer valid for zero sized reads if the buffer didn't allocate.
///
/// The caller must ensure that the buffer outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// This method guarantees that for the purpose of the aliasing model, this method
/// does not materialize a reference to the underlying slice, and thus the returned pointer
/// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
/// Note that calling other methods that materialize references to the slice,
/// or references to specific elements you are planning on accessing through this pointer,
/// may still invalidate this pointer.
/// See the second example below for how this guarantee can be used.
///
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// // Allocate buffer big enough for 4 elements.
/// let size = 4;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(size);
/// let buf_ptr = buf.as_mut_ptr();
///
/// // Initialize elements via raw pointer writes, then set length.
/// unsafe {
/// for i in 0..size {
/// *buf_ptr.add(i) = i as u8;
/// }
/// buf.set_len(size);
/// }
/// assert_eq!(&*buf, &[0, 1, 2, 3]);
/// ```
///
/// Due to the aliasing guarantee, the following code is legal:
///
/// ```rust
/// # use aligned_buffer::UniqueAlignedBuffer;
/// unsafe {
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([0]);
/// let ptr1 = buf.as_mut_ptr();
/// ptr1.write(1);
/// let ptr2 = buf.as_mut_ptr();
/// ptr2.write(2);
/// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
/// ptr1.write(3);
/// }
/// ```
///
/// [`as_mut_ptr`]: UniqueAlignedBuffer::as_mut_ptr
/// [`as_ptr`]: UniqueAlignedBuffer::as_ptr
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
// We shadow the slice method of the same name to avoid going through
// `deref_mut`, which creates an intermediate reference.
self.buf.ptr()
}
/// Forces the length of the buffer to `new_len`.
///
/// This is a low-level operation that maintains none of the normal
/// invariants of the type. Normally changing the length of a buffer
/// is done using one of the safe operations instead, such as
/// [`truncate`], [`resize`], [`extend`], or [`clear`].
///
/// [`truncate`]: UniqueAlignedBuffer::truncate
/// [`resize`]: UniqueAlignedBuffer::resize
/// [`extend`]: Extend::extend
/// [`clear`]: UniqueAlignedBuffer::clear
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`capacity()`].
/// - The elements at `old_len..new_len` must be initialized.
///
/// [`capacity()`]: UniqueAlignedBuffer::capacity
///
/// # Examples
///
/// This method can be useful for situations in which the buffer
/// is serving as a buffer for other code, particularly over FFI:
///
/// ```no_run
/// # #![allow(dead_code)]
/// # // This is just a minimal skeleton for the doc example;
/// # // don't use this as a starting point for a real library.
/// # use aligned_buffer::UniqueAlignedBuffer;
/// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
/// # const Z_OK: i32 = 0;
/// # extern "C" {
/// # fn deflateGetDictionary(
/// # strm: *mut std::ffi::c_void,
/// # dictionary: *mut u8,
/// # dictLength: *mut usize,
/// # ) -> i32;
/// # }
/// # impl StreamWrapper {
/// pub fn get_dictionary(&self) -> Option<UniqueAlignedBuffer<16>> {
/// // Per the FFI method's docs, "32768 bytes is always enough".
/// let mut dict = UniqueAlignedBuffer::<16>::with_capacity(32_768);
/// let mut dict_length = 0;
/// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
/// // 1. `dict_length` elements were initialized.
/// // 2. `dict_length` <= the capacity (32_768)
/// // which makes `set_len` safe to call.
/// unsafe {
/// // Make the FFI call...
/// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
/// if r == Z_OK {
/// // ...and update the length to what was initialized.
/// dict.set_len(dict_length);
/// Some(dict)
/// } else {
/// None
/// }
/// }
/// }
/// # }
/// ```
///
/// Normally, here, one would use [`clear`] instead to correctly drop
/// the contents and thus not leak memory.
#[inline]
pub unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= self.capacity());
self.len = new_len;
}
/// Appends an element to the back of a buffer.
///
/// # Panics
///
/// Panics if the new capacity is too large.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2]);
/// buf.push(3);
/// assert_eq!(&*buf, &[1, 2, 3]);
/// ```
#[inline]
pub fn push(&mut self, value: u8) {
// This will panic or abort if we would allocate too much.
if self.len == self.capacity() {
// SAFETY: We're the unieue owner of the buffer.
unsafe {
self.buf.reserve(self.len, 1);
}
}
unsafe {
let end = self.as_mut_ptr().add(self.len);
ptr::write(end, value);
self.len += 1;
}
}
/// Moves all the elements of `other` into `self`, leaving `other` empty.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<128>::with_capacity(10);
/// buf.extend([1, 2, 3]);
/// let mut vec = vec![4u8, 5, 6];
/// buf.append(&vec);
/// assert_eq!(&*buf, &[1, 2, 3, 4, 5, 6]);
/// assert_eq!(vec, [4, 5, 6]);
/// ```
#[inline]
pub fn append(&mut self, other: &(impl AsRef<[u8]> + ?Sized)) {
// Safety: `other` cannot overlap with `self.as_mut_slice()`,
// because `self` is a unique reference.
unsafe {
self.append_elements(other.as_ref() as *const [u8]);
}
}
/// Appends elements to `self` from other buffer.
///
/// # Safety
/// This function requires that `other` does not overlap with `self.as_mut_slice()`.
#[inline]
unsafe fn append_elements(&mut self, other: *const [u8]) {
let count = unsafe { (*other).len() };
self.reserve(count);
let len = self.len();
unsafe { ptr::copy_nonoverlapping(other as *const u8, self.as_mut_ptr().add(len), count) };
self.len += count;
}
/// Clears the buffer, removing all values.
///
/// Note that this method has no effect on the allocated capacity
/// of the buffer.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3]);
///
/// buf.clear();
///
/// assert!(buf.is_empty());
/// ```
#[inline]
pub fn clear(&mut self) {
self.len = 0;
}
/// Returns the number of elements in the buffer, also referred to
/// as its 'length'.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3]);
/// assert_eq!(buf.len(), 3);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Returns `true` if the buffer contains no data.
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// assert!(buf.is_empty());
///
/// buf.push(1);
/// assert!(!buf.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Resizes the `UniqueAlignedBuffer` in-place so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the `UniqueAlignedBuffer` is extended by the
/// difference, with each additional slot filled with `value`.
/// If `new_len` is less than `len`, the `UniqueAlignedBuffer` is simply truncated.
///
/// If you only need to resize to a smaller size, use [`UniqueAlignedBuffer::truncate`].
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.resize(3, 42);
/// assert_eq!(&*buf, &[42, 42, 42]);
///
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1, 2, 3, 4]);
/// buf.resize(2, 0);
/// assert_eq!(&*buf, &[1, 2]);
/// ```
pub fn resize(&mut self, new_len: usize, value: u8) {
let len = self.len();
if new_len > len {
self.extend_with(new_len - len, value)
} else {
self.truncate(new_len);
}
}
/// Copies and appends all elements in a slice to the `UniqueAlignedBuffer`.
///
/// Iterates over the slice `other`, copies each element, and then appends
/// it to this `UniqueAlignedBuffer`. The `other` slice is traversed in-order.
///
/// Note that this function is same as [`extend`] except that it is
/// specialized to work with slices instead. If and when Rust gets
/// specialization this function will likely be deprecated (but still
/// available).
///
/// # Examples
///
/// ```
/// # use aligned_buffer::UniqueAlignedBuffer;
/// let mut buf = UniqueAlignedBuffer::<16>::with_capacity(10);
/// buf.extend([1]);
/// buf.extend_from_slice(&[2, 3, 4]);
/// assert_eq!(&*buf, &[1, 2, 3, 4]);
/// ```
///
/// [`extend`]: UniqueAlignedBuffer::extend
pub fn extend_from_slice(&mut self, other: &[u8]) {
self.append(other);
}
/// Extend the vector by `n` clones of value.
fn extend_with(&mut self, n: usize, value: u8) {
self.reserve(n);
unsafe {
let mut ptr = self.as_mut_ptr().add(self.len());
// Use SetLenOnDrop to work around bug where compiler
// might not realize the store through `ptr` through self.set_len()
// don't alias.
let mut local_len = SetLenOnDrop::new(&mut self.len);
// Write all elements
for _ in 0..n {
ptr::write(ptr, value);
ptr = ptr.add(1);
}
local_len.increment_len(n);
// len set by scope guard
}
}
/// Converts a `UniqueAlignedBuffer` into a `SharedAlignedBuffer`
/// that can be safely cloned and shared between threads.
pub fn into_shared(mut self) -> SharedAlignedBuffer<ALIGNMENT, A> {
self.buf.reset_len(self.len());
debug_assert_eq!(self.buf.cap_or_len(), self.len());
SharedAlignedBuffer { buf: self.buf }
}
}
impl<const ALIGNMENT: usize, A> ops::Deref for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
type Target = [u8];
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { std::slice::from_raw_parts(self.as_ptr(), self.len()) }
}
}
impl<const ALIGNMENT: usize, A> ops::DerefMut for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
unsafe { std::slice::from_raw_parts_mut(self.as_mut_ptr(), self.len()) }
}
}
impl<I: SliceIndex<[u8]>, const ALIGNMENT: usize, A> ops::Index<I>
for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
ops::Index::index(&**self, index)
}
}
impl<I: SliceIndex<[u8]>, const ALIGNMENT: usize, A> ops::IndexMut<I>
for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
ops::IndexMut::index_mut(&mut **self, index)
}
}
impl<const ALIGNMENT: usize> FromIterator<u8> for UniqueAlignedBuffer<ALIGNMENT, Global> {
#[inline]
fn from_iter<T: IntoIterator<Item = u8>>(iter: T) -> Self {
let iter = iter.into_iter();
let (lower, _) = iter.size_hint();
let mut buf = Self::with_capacity(lower);
buf.extend(iter);
buf
}
}
impl<const ALIGNMENT: usize, A> Extend<u8> for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
#[inline]
fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
let mut iter = iter.into_iter();
let (lower, _) = iter.size_hint();
self.reserve(lower);
let free = self.capacity() - self.len();
unsafe {
let mut ptr = self.as_mut_ptr().add(self.len());
// Use SetLenOnDrop to work around bug where compiler
// might not realize the store through `ptr` through self.set_len()
// don't alias.
let mut local_len = SetLenOnDrop::new(&mut self.len);
// Write elements until we run out of space or the iterator ends
// (whichever comes first). We don't use `for-each` because we need to
// keep the iterator alive in case not all elements fit in the
// allocated capacity. This can happen if the iterator is not an
// exact size iterator, or simply gives out a lower bound that is
// not exact.
// Note: if we could specialize on the iterator type, we could use
// ExactSizeIterator to avoid the free check.
for _ in 0..free {
let Some(byte) = iter.next() else {
// We're done, so we can just return
return;
};
ptr::write(ptr, byte);
ptr = ptr.add(1);
// Increment the length in every step in case next() panics
local_len.increment_len(1);
}
// len set by scope guard
}
// write the remainder of the iter using push
for byte in iter {
self.push(byte);
}
}
}
impl<const ALIGNMENT: usize, A> Default for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT> + Default,
{
fn default() -> Self {
Self::new_in(A::default())
}
}
impl<const ALIGNMENT: usize, A> fmt::Debug for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<const ALIGNMENT: usize, A> AsRef<[u8]> for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
#[inline]
fn as_ref(&self) -> &[u8] {
self
}
}
impl<const ALIGNMENT: usize, A> AsMut<[u8]> for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
#[inline]
fn as_mut(&mut self) -> &mut [u8] {
self
}
}
impl<const ALIGNMENT: usize, A> TryFrom<SharedAlignedBuffer<ALIGNMENT, A>>
for UniqueAlignedBuffer<ALIGNMENT, A>
where
A: BufferAllocator<ALIGNMENT>,
{
type Error = SharedAlignedBuffer<ALIGNMENT, A>;
#[inline]
fn try_from(value: SharedAlignedBuffer<ALIGNMENT, A>) -> Result<Self, Self::Error> {
SharedAlignedBuffer::try_unique(value)
}
}
struct SetLenOnDrop<'a> {
len: &'a mut usize,
local_len: usize,
}
impl<'a> SetLenOnDrop<'a> {
#[inline]
pub(super) fn new(len: &'a mut usize) -> Self {
SetLenOnDrop {
local_len: *len,
len,
}
}
#[inline]
pub(super) fn increment_len(&mut self, increment: usize) {
self.local_len += increment;
}
}
impl Drop for SetLenOnDrop<'_> {
#[inline]
fn drop(&mut self) {
*self.len = self.local_len;
}
}