1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
//! Implementation of finding the Lowest Common Ancestor (LCA) of a tree. This impl first finds an
//! Euler tour from the root node which visits all the nodes in the tree. The node height values
//! obtained from the Euler tour can then be used in combination with a sparse table to find the LCA
//! in O(1).
//!
//! # Resources
//!
//! - [W. Fiset's video](https://www.youtube.com/watch?v=sD1IoalFomA)

use super::rooting::TreeNode;

pub struct Tree {
    pub root: TreeNode,
    pub size: usize,
}

pub struct LcaSolver {
    sparse_table: MinSparseTable,
    node_order: Vec<usize>,
    // The last occurrence mapping. This mapping keeps track of the last occurrence of a TreeNode in
    // the Euler tour for easy indexing.
    last: Vec<usize>,
}

impl LcaSolver {
    pub fn new(tree: &Tree) -> Self {
        let mut node_depth = vec![0usize; tree.size * 2 - 1]; // Vec::<usize>::new();
        let mut node_order = vec![0usize; tree.size * 2 - 1]; // Vec::<usize>::new();
        let mut last = vec![0usize; tree.size];
        let mut tour_index = 0;

        let mut visit = |node: usize, depth: usize| {
            node_order[tour_index] = node;
            node_depth[tour_index] = depth;
            last[node] = tour_index;
            tour_index += 1;
        };

        //dfs
        let mut stack = vec![(&tree.root, 0usize)];
        let mut visited = vec![false; tree.size];
        while let Some((node, depth)) = stack.pop() {
            visit(node.id, depth);
            if !visited[node.id] {
                visited[node.id] = true;
                for child in &node.children {
                    stack.push((node, depth)); // revisit the current node after visiting each child
                    stack.push((child, depth + 1));
                }
            }
        }

        let sparse_table = MinSparseTable::new(&node_depth);
        Self {
            sparse_table,
            node_order,
            last,
        }
    }
    pub fn lca(&self, a: usize, b: usize) -> usize {
        let (a, b) = (self.last[a], self.last[b]);
        let (l, r) = if a < b { (a, b) } else { (b, a) };
        let idx = self.sparse_table.query_index(l, r);
        self.node_order[idx]
    }
}

pub struct MinSparseTable {
    // The sparse table values.
    min_depth: Vec<Vec<Option<usize>>>,
    // Index Table associated with the values in the sparse table.
    index: Vec<Vec<Option<usize>>>,
    log2: Vec<usize>,
}

impl MinSparseTable {
    pub fn new(node_depth: &[usize]) -> Self {
        let n = node_depth.len();
        let log2 = Self::build_log2(n);
        let m = log2[n];
        let mut min_depth = vec![vec![None; n]; m + 1];
        let mut index = vec![vec![None; n]; m + 1];
        for (i, &depth) in node_depth.iter().enumerate() {
            min_depth[0][i] = Some(depth);
            index[0][i] = Some(i);
        }
        // Build sparse table combining the values of the previous intervals.
        for i in 1..=m {
            for j in 0..=(n - (1 << i)) {
                let left_interval = min_depth[i - 1][j];
                let right_interval = min_depth[i - 1][j + (1 << (i - 1))];
                // Propagate the index of the best value
                if left_interval <= right_interval {
                    min_depth[i][j] = left_interval;
                    index[i][j] = index[i - 1][j];
                } else {
                    min_depth[i][j] = right_interval;
                    index[i][j] = index[i - 1][j + (1 << (i - 1))];
                }
            }
        }
        Self {
            min_depth,
            index,
            log2,
        }
    }
    fn build_log2(n: usize) -> Vec<usize> {
        let mut log2 = vec![0usize; n + 1];
        for i in 2..=n {
            log2[i] = log2[i / 2] + 1;
        }
        log2
    }
    fn query_index(&self, l: usize, r: usize) -> usize {
        let len = r - l + 1;
        let i = self.log2[len];
        let left_interval = self.min_depth[i][l];
        let right_interval = self.min_depth[i][r - (1 << i) + 1];
        if left_interval <= right_interval {
            self.index[i][l]
        } else {
            self.index[i][r - (i << i) + 1]
        }
        .unwrap()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::algo::graph::UnweightedAdjacencyList;
    #[test]
    fn test_tree_lowest_commmon_ancestor() {
        let tree = UnweightedAdjacencyList::new_undirected(
            17,
            &[
                [0, 1],
                [0, 2],
                [1, 3],
                [1, 4],
                [2, 5],
                [2, 6],
                [2, 7],
                [3, 8],
                [3, 9],
                [5, 10],
                [5, 11],
                [7, 12],
                [7, 13],
                [11, 14],
                [11, 15],
                [11, 16],
            ],
        );
        let size = tree.vertices_count();
        let root = TreeNode::from_adjacency_list(&tree, 0);
        let tree = Tree { root, size };
        let lca_solver = LcaSolver::new(&tree);
        assert_eq!(lca_solver.lca(14, 13), 2);
        assert_eq!(lca_solver.lca(9, 11), 0);
        assert_eq!(lca_solver.lca(12, 12), 12);
    }
}