1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use crate::algo::graph::{Edge, WeightedAdjacencyList};
use partial_min_max::min;
impl WeightedAdjacencyList {
pub fn toposort(&self) -> Vec<usize> {
let n = self.vertices_count();
let mut visited = vec![false; n];
let mut ordering = vec![0usize; n];
let mut i = n - 1;
fn _dfs(
mut i: usize,
at: usize,
visited: &mut [bool],
ordering: &mut [usize],
graph: &WeightedAdjacencyList,
) -> usize {
visited[at] = true;
for &edge in &graph[at] {
if !visited[edge.to] {
i = _dfs(i, edge.to, visited, ordering, graph);
}
}
ordering[i] = at;
i.saturating_sub(1)
}
for at in 0..n {
if !visited[at] {
i = _dfs(i, at, &mut visited, &mut ordering, &self);
}
}
ordering
}
pub fn toposort_khan(&self) -> Vec<usize> {
let n = self.vertices_count();
let mut dependencies = vec![0; n];
for (_dependency, dependent, _cost) in self.edges() {
dependencies[dependent] += 1;
}
let mut buildables: Vec<_> = (0..n).filter(|&i| dependencies[i] == 0).collect();
let mut i = 0;
let mut ordering = vec![0; n];
while i < n {
let mut new_buildables = Vec::new();
for &buildable in &buildables {
ordering[i] = buildable;
i += 1;
for &dependent in &self[buildable] {
let x = &mut dependencies[dependent.to];
*x -= 1;
if *x == 0 {
new_buildables.push(dependent.to);
}
}
}
buildables = new_buildables;
}
ordering
}
pub fn dag_shortest_path(&self, start: usize) -> Vec<f32> {
let toposort = self.toposort_khan();
let mut dists = vec![f32::INFINITY; self.vertices_count()];
dists[start] = 0.;
let i = toposort
.iter()
.position(|&node_id| node_id == start)
.unwrap();
toposort.into_iter().skip(i).for_each(|node_id| {
let cur_dist = dists[node_id];
if cur_dist.is_finite() {
for &Edge { to, cost } in &self[node_id] {
let new_dist = cur_dist + cost;
let dist = &mut dists[to];
*dist = min(*dist, new_dist);
}
}
});
dists
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_toposort() {
let edges = [
[0, 2],
[3, 1],
[1, 4],
[4, 5],
[3, 4],
[2, 6],
[6, 7],
[4, 8],
[9, 2],
[9, 10],
[10, 6],
[6, 11],
[11, 12],
[12, 8],
[7, 12],
[0, 6],
];
let graph = WeightedAdjacencyList::new_directed_unweighted(13, &edges);
let ordering = graph.toposort_khan();
assert!(check_sort_result(&ordering, &edges));
let ordering = graph.toposort();
assert!(check_sort_result(&ordering, &edges));
fn check_sort_result(result: &[usize], edges: &[[usize; 2]]) -> bool {
let mut rank = vec![0; result.len()];
for (i, &node) in result.iter().enumerate() {
rank[node] = i;
}
edges
.iter()
.all(|&[dependency, dependent]| rank[dependency] < rank[dependent])
}
}
#[test]
fn test_dag_shortest_path() {
let edges = &[
(0, 1, 3.),
(0, 2, 2.),
(0, 5, 3.),
(1, 3, 1.),
(1, 2, 6.),
(2, 3, 1.),
(2, 4, 10.),
(3, 4, 5.),
(5, 4, 7.),
];
let graph = WeightedAdjacencyList::new_directed(7, edges);
let dists = graph.dag_shortest_path(0);
assert_eq!(&dists, &[0., 3., 2., 3., 8., 3., f32::INFINITY])
}
}