1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
use super::{MaxFlowSolver, NetworkFlowAdjacencyList};
use std::collections::VecDeque;

pub struct EdmondsKarpSolver {}

impl MaxFlowSolver for EdmondsKarpSolver {
    fn max_flow(graph: &mut NetworkFlowAdjacencyList) -> i32 {
        let n = graph.vertices_count();
        let mut visited = vec![0; n];
        let mut visited_token = 1;

        let mut bfs = |visited_token| {
            let mut q = VecDeque::with_capacity(n);
            let mut prev = vec![None; n];
            visited[graph.source] = visited_token;
            q.push_back(graph.source);
            while let Some(node) = q.pop_front() {
                if node == graph.sink {
                    break;
                }
                for edge in &graph[node] {
                    let _edge = edge.borrow();
                    if _edge.reamaining_capacity() > 0 && visited[_edge.to] != visited_token {
                        visited[_edge.to] = visited_token;
                        prev[_edge.to] = Some(edge.clone());
                        q.push_back(_edge.to);
                    }
                }
            }
            if prev[graph.sink].is_none() {
                return 0;
            }

            let mut bottleneck = i32::MAX;
            let mut node = graph.sink;

            while let Some(prev_edge) = &prev[node] {
                bottleneck = std::cmp::min(bottleneck, prev_edge.borrow().reamaining_capacity());
                node = prev_edge.borrow().from;
            }

            node = graph.sink;

            while let Some(prev_edge) = &prev[node] {
                prev_edge.borrow_mut().augment(bottleneck);
                node = prev_edge.borrow().from;
            }

            bottleneck
        };
        let mut flow = 0;
        let mut f = -1;
        while f != 0 {
            f = bfs(visited_token);

            flow += f;
            visited_token += 1;
        }
        flow
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn test_max_flow(n: usize, edges: &[(usize, usize, i32)], expected_max_flow: i32) {
        let mut graph = NetworkFlowAdjacencyList::from_edges(n, edges);
        let max_flow = EdmondsKarpSolver::max_flow(&mut graph);
        assert_eq!(max_flow, expected_max_flow);
    }

    #[test]
    fn test_small_graph() {
        test_max_flow(
            6,
            &[
                // Source edges
                (5, 0, 10),
                (5, 1, 10),
                // Sink edges
                (2, 4, 10),
                (3, 4, 10),
                // Middle edges
                (0, 1, 2),
                (0, 2, 4),
                (0, 3, 8),
                (1, 3, 9),
                (3, 2, 6),
            ],
            19,
        );
    }

    #[test]
    fn test_disconnected() {
        test_max_flow(4, &[(3, 0, 9), (1, 2, 9)], 0);
    }

    #[test]
    fn test_medium_graph() {
        test_max_flow(
            12,
            &[
                // from source
                (11, 0, 5),
                (11, 1, 20),
                (11, 2, 10),
                // to sink
                (7, 10, 7),
                (8, 10, 15),
                (9, 10, 60),
                // middle
                (0, 1, 3),
                (0, 5, 4),
                (1, 4, 14),
                (1, 5, 14),
                (2, 1, 5),
                (2, 3, 4),
                (3, 4, 3),
                (3, 9, 11),
                (4, 6, 4),
                (4, 8, 22),
                (5, 6, 8),
                (5, 7, 3),
                (6, 7, 12),
                (7, 8, 9),
                (8, 9, 11),
            ],
            29,
        );
    }
}