1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
use crate::algaeset::AlgaeSet;
use crate::mapping::{BinaryOperation, PropertyError, PropertyType};

pub trait Magmoid<T: Copy + PartialEq> {
    fn binop(&mut self) -> &mut dyn BinaryOperation<T>;

    fn with(&mut self, left: T, right: T) -> Result<T, PropertyError> {
        self.binop().with(left, right)
    }
}

/// A set with an associated binary operation.
///
/// This is a representation of the simplest algebraic structure: the magma.
/// There are no specific properties required of its components, so its
/// construction involves nothing more than a set (specifically an
/// [`AlgaeSet`] and a binary operation (anything implementing
/// [`BinaryOperation`]).
///
/// # Examples
///
/// ```
/// use algae_rs::algaeset::AlgaeSet;
/// use algae_rs::mapping::{BinaryOperation, AbelianOperation};
/// use algae_rs::magma::{Magmoid, Magma};
///
/// let mut add = AbelianOperation::new(&|a, b| a + b);
/// let mut magma = Magma::new(
///     AlgaeSet::<i32>::all(),
///     &mut add
/// );
///
/// let magma_sum = magma.with(1, 2);
/// assert!(magma_sum.is_ok());
/// assert!(magma_sum.unwrap() == 3);
/// ```
pub struct Magma<'a, T> {
    aset: AlgaeSet<T>,
    binop: &'a mut dyn BinaryOperation<T>,
}

impl<'a, T> Magma<'a, T> {
    pub fn new(aset: AlgaeSet<T>, binop: &'a mut dyn BinaryOperation<T>) -> Self {
        Self { aset, binop }
    }
}

impl<'a, T: Copy + PartialEq> Magmoid<T> for Magma<'a, T> {
    fn binop(&mut self) -> &mut dyn BinaryOperation<T> {
        self.binop
    }
}

/// A set equipped with a binary operation and a specified identity element.
///
/// [`UnitalMagma`] is a representation of the abstract algebraic unital magma.
/// The existence of an identity element is all that is required of its
/// binary operation. Its construction requires a set (specifically an
/// [`AlgaeSet`]) and an identity-preserving [`BinaryOperation`].
///
/// # Examples
///
/// ```
/// use algae_rs::algaeset::AlgaeSet;
/// use algae_rs::mapping::{BinaryOperation, IdentityOperation};
/// use algae_rs::magma::{Magmoid, UnitalMagma};
///
/// let mut add = IdentityOperation::new(&|a, b| a + b, 0);
/// let mut magma = UnitalMagma::new(
///     AlgaeSet::<i32>::all(),
///     &mut add,
///     0
/// );
///
/// let sum = magma.with(1, 2);
/// assert!(sum.is_ok());
/// assert!(sum.unwrap() == 3);
///
/// let mut bad_add = IdentityOperation::new(&|a, b| a + b, 3);
/// let mut bad_magma = UnitalMagma::new(
///     AlgaeSet::<i32>::all(),
///     &mut bad_add,
///     3
/// );
///
/// let bad_sum = bad_magma.with(2, 3);
/// assert!(bad_sum.is_err());
/// ```
pub struct UnitalMagma<'a, T> {
    aset: AlgaeSet<T>,
    binop: &'a mut dyn BinaryOperation<T>,
    identity: T,
}

impl<'a, T: Copy + PartialEq> UnitalMagma<'a, T> {
    pub fn new(aset: AlgaeSet<T>, binop: &'a mut dyn BinaryOperation<T>, identity: T) -> Self {
        assert!(binop.is(PropertyType::WithIdentity(identity)));
        Self {
            aset,
            binop,
            identity,
        }
    }
}

impl<'a, T: Copy + PartialEq> Magmoid<T> for UnitalMagma<'a, T> {
    fn binop(&mut self) -> &mut dyn BinaryOperation<T> {
        self.binop
    }
}

/// A set equipped with an associative binary operation.
///
/// [`Groupoid`] is a representation of the abstract algebraic groupoid.
/// Associativity is all that is required of its binary operation: its
/// construction involves a set (specifically an [`AlgaeSet`]) and an
/// associative [`BinaryOperation`].
///
/// # Examples
///
/// ```
/// use algae_rs::algaeset::AlgaeSet;
/// use algae_rs::mapping::{BinaryOperation, AssociativeOperation};
/// use algae_rs::magma::{Magmoid, Groupoid};
///
/// let mut add = AssociativeOperation::new(&|a, b| a + b);
/// let mut groupoid = Groupoid::new(
///     AlgaeSet::<i32>::all(),
///     &mut add
/// );
///
/// let groupoid_sum = groupoid.with(1, 2);
/// assert!(groupoid_sum.is_ok());
/// assert!(groupoid_sum.unwrap() == 3);
///
/// let mut div = AssociativeOperation::new(&|a, b| a / b);
/// let mut bad_groupoid = Groupoid::new(
///     AlgaeSet::<f32>::all(),
///     &mut div,
/// );
///
/// let ok_dividend = bad_groupoid.with(1.0, 2.0);
/// assert!(ok_dividend.is_ok());
/// assert!(ok_dividend.unwrap() == 0.5);
/// let err_dividend = bad_groupoid.with(3.0, 6.0);
/// assert!(err_dividend.is_err());
/// ```
pub struct Groupoid<'a, T> {
    aset: AlgaeSet<T>,
    binop: &'a mut dyn BinaryOperation<T>,
}

impl<'a, T: Copy + PartialEq> Groupoid<'a, T> {
    pub fn new(aset: AlgaeSet<T>, binop: &'a mut dyn BinaryOperation<T>) -> Self {
        assert!(binop.is(PropertyType::Associative));
        Self { aset, binop }
    }
}

impl<'a, T: Copy + PartialEq> Magmoid<T> for Groupoid<'a, T> {
    fn binop(&mut self) -> &mut dyn BinaryOperation<T> {
        self.binop
    }
}

/// A set equipped with a cancellative binary operation.
///
/// [`Quasigroup`] is a representation of the abstract algebraic quasigroup.
/// Cancellativity (ie. the Latin Square property) is required of its binary
/// operation. Its construction involves a set (specifically an [`AlgaeSet`])
/// and a [`BinaryOperation`] with the aforementioned properties.
///
/// # Examples
///
/// ```
/// use algae_rs::algaeset::AlgaeSet;
/// use algae_rs::mapping::{BinaryOperation, CancellativeOperation};
/// use algae_rs::magma::{Magmoid, Quasigroup};
///
/// let mut add = CancellativeOperation::new(&|a, b| a + b);
/// let mut quasigroup = Quasigroup::new(
///     AlgaeSet::<i32>::all(),
///     &mut add
/// );
/// let sum = quasigroup.with(1, 2);
/// assert!(sum.is_ok());
/// assert!(sum.unwrap() == 3);
/// ```
pub struct Quasigroup<'a, T> {
    aset: AlgaeSet<T>,
    binop: &'a mut dyn BinaryOperation<T>,
}

impl<'a, T: Copy + PartialEq> Quasigroup<'a, T> {
    pub fn new(aset: AlgaeSet<T>, binop: &'a mut dyn BinaryOperation<T>) -> Self {
        assert!(binop.is(PropertyType::Cancellative));
        Self { aset, binop }
    }
}

impl<'a, T: Copy + PartialEq> Magmoid<T> for Quasigroup<'a, T> {
    fn binop(&mut self) -> &mut dyn BinaryOperation<T> {
        self.binop
    }
}

/// A set equipped with an associative binary operation with identity.
///
/// [`Monoid`] is a representation of the abstract algebraic monoid.
/// Associativity and identity are required of its binary operation. Its
/// construction involves a set (specifically an [`AlgaeSet`] and a
/// [`BinaryOperation`] with the aforementioned properties.
///
/// # Examples
///
/// ```
/// use algae_rs::algaeset::AlgaeSet;
/// use algae_rs::mapping::{BinaryOperation, MonoidOperation};
/// use algae_rs::magma::{Magmoid, Monoid};
///
/// let mut add = MonoidOperation::new(&|a, b| a + b, 0);
/// let mut monoid = Monoid::new(
///     AlgaeSet::<i32>::all(),
///     &mut add,
///     0
/// );
///
/// let monoid_sum = monoid.with(1, 2);
/// assert!(monoid_sum.is_ok());
/// assert!(monoid_sum.unwrap() == 3);
///
/// let mut bad_add = MonoidOperation::new(&|a, b| a + b, 1);
/// let mut bad_monoid = Monoid::new(
///     AlgaeSet::<i32>::all(),
///     &mut bad_add,
///     1
/// );
///
/// let bad_monoid_sum = bad_monoid.with(1, 2);
/// assert!(bad_monoid_sum.is_err());
/// ```
pub struct Monoid<'a, T> {
    aset: AlgaeSet<T>,
    binop: &'a mut dyn BinaryOperation<T>,
    identity: T,
}

impl<'a, T: Copy + PartialEq> Monoid<'a, T> {
    pub fn new(aset: AlgaeSet<T>, binop: &'a mut dyn BinaryOperation<T>, identity: T) -> Self {
        assert!(binop.is(PropertyType::Associative));
        assert!(binop.is(PropertyType::WithIdentity(identity)));
        Self {
            aset,
            binop,
            identity,
        }
    }
}

impl<'a, T: Copy + PartialEq> Magmoid<T> for Monoid<'a, T> {
    fn binop(&mut self) -> &mut dyn BinaryOperation<T> {
        self.binop
    }
}