cranelift_codegen/verifier/
mod.rs

1//! A verifier for ensuring that functions are well formed.
2//! It verifies:
3//!
4//! EBB integrity
5//!
6//! - All instructions reached from the `ebb_insts` iterator must belong to
7//!   the EBB as reported by `inst_ebb()`.
8//! - Every EBB must end in a terminator instruction, and no other instruction
9//!   can be a terminator.
10//! - Every value in the `ebb_params` iterator belongs to the EBB as reported by `value_ebb`.
11//!
12//! Instruction integrity
13//!
14//! - The instruction format must match the opcode.
15//! - All result values must be created for multi-valued instructions.
16//! - All referenced entities must exist. (Values, EBBs, stack slots, ...)
17//! - Instructions must not reference (eg. branch to) the entry block.
18//!
19//! SSA form
20//!
21//! - Values must be defined by an instruction that exists and that is inserted in
22//!   an EBB, or be an argument of an existing EBB.
23//! - Values used by an instruction must dominate the instruction.
24//!
25//! Control flow graph and dominator tree integrity:
26//!
27//! - All predecessors in the CFG must be branches to the EBB.
28//! - All branches to an EBB must be present in the CFG.
29//! - A recomputed dominator tree is identical to the existing one.
30//!
31//! Type checking
32//!
33//! - Compare input and output values against the opcode's type constraints.
34//!   For polymorphic opcodes, determine the controlling type variable first.
35//! - Branches and jumps must pass arguments to destination EBBs that match the
36//!   expected types exactly. The number of arguments must match.
37//! - All EBBs in a jump table must take no arguments.
38//! - Function calls are type checked against their signature.
39//! - The entry block must take arguments that match the signature of the current
40//!   function.
41//! - All return instructions must have return value operands matching the current
42//!   function signature.
43//!
44//! Global values
45//!
46//! - Detect cycles in global values.
47//! - Detect use of 'vmctx' global value when no corresponding parameter is defined.
48//!
49//! TODO:
50//! Ad hoc checking
51//!
52//! - Stack slot loads and stores must be in-bounds.
53//! - Immediate constraints for certain opcodes, like `udiv_imm v3, 0`.
54//! - `Insertlane` and `extractlane` instructions have immediate lane numbers that must be in
55//!   range for their polymorphic type.
56//! - Swizzle and shuffle instructions take a variable number of lane arguments. The number
57//!   of arguments must match the destination type, and the lane indexes must be in range.
58
59use self::flags::verify_flags;
60use crate::dbg::DisplayList;
61use crate::dominator_tree::DominatorTree;
62use crate::entity::SparseSet;
63use crate::flowgraph::{BasicBlock, ControlFlowGraph};
64use crate::ir;
65use crate::ir::entities::AnyEntity;
66use crate::ir::instructions::{BranchInfo, CallInfo, InstructionFormat, ResolvedConstraint};
67use crate::ir::{
68    types, ArgumentLoc, Ebb, FuncRef, Function, GlobalValue, Inst, InstructionData, JumpTable,
69    Opcode, SigRef, StackSlot, StackSlotKind, Type, Value, ValueDef, ValueList, ValueLoc,
70};
71use crate::isa::TargetIsa;
72use crate::iterators::IteratorExtras;
73use crate::print_errors::pretty_verifier_error;
74use crate::settings::FlagsOrIsa;
75use crate::timing;
76use alloc::collections::BTreeSet;
77use alloc::string::{String, ToString};
78use alloc::vec::Vec;
79use core::cmp::Ordering;
80use core::fmt::{self, Display, Formatter, Write};
81use log::debug;
82use thiserror::Error;
83
84pub use self::cssa::verify_cssa;
85pub use self::liveness::verify_liveness;
86pub use self::locations::verify_locations;
87
88mod cssa;
89mod flags;
90mod liveness;
91mod locations;
92
93/// A verifier error.
94#[derive(Error, Debug, PartialEq, Eq, Clone)]
95#[error("{}{}: {}", .location, format_context(.context), .message)]
96pub struct VerifierError {
97    /// The entity causing the verifier error.
98    pub location: AnyEntity,
99    /// Optionally provide some context for the given location; e.g., for `inst42` provide
100    /// `Some("v3 = iconst.i32 0")` for more comprehensible errors.
101    pub context: Option<String>,
102    /// The error message.
103    pub message: String,
104}
105
106/// Helper for formatting Verifier::Error context.
107fn format_context(context: &Option<String>) -> String {
108    match context {
109        None => "".to_string(),
110        Some(c) => format!(" ({})", c),
111    }
112}
113
114/// Convenience converter for making error-reporting less verbose.
115///
116/// Converts a tuple of `(location, context, message)` to a `VerifierError`.
117/// ```
118/// use cranelift_codegen::verifier::VerifierErrors;
119/// use cranelift_codegen::ir::Inst;
120/// let mut errors = VerifierErrors::new();
121/// errors.report((Inst::from_u32(42), "v3 = iadd v1, v2", "iadd cannot be used with values of this type"));
122/// // note the double parenthenses to use this syntax
123/// ```
124impl<L, C, M> From<(L, C, M)> for VerifierError
125where
126    L: Into<AnyEntity>,
127    C: Into<String>,
128    M: Into<String>,
129{
130    fn from(items: (L, C, M)) -> Self {
131        let (location, context, message) = items;
132        Self {
133            location: location.into(),
134            context: Some(context.into()),
135            message: message.into(),
136        }
137    }
138}
139
140/// Convenience converter for making error-reporting less verbose.
141///
142/// Same as above but without `context`.
143impl<L, M> From<(L, M)> for VerifierError
144where
145    L: Into<AnyEntity>,
146    M: Into<String>,
147{
148    fn from(items: (L, M)) -> Self {
149        let (location, message) = items;
150        Self {
151            location: location.into(),
152            context: None,
153            message: message.into(),
154        }
155    }
156}
157
158/// Result of a step in the verification process.
159///
160/// Functions that return `VerifierStepResult<()>` should also take a
161/// mutable reference to `VerifierErrors` as argument in order to report
162/// errors.
163///
164/// Here, `Ok` represents a step that **did not lead to a fatal error**,
165/// meaning that the verification process may continue. However, other (non-fatal)
166/// errors might have been reported through the previously mentioned `VerifierErrors`
167/// argument.
168pub type VerifierStepResult<T> = Result<T, ()>;
169
170/// Result of a verification operation.
171///
172/// Unlike `VerifierStepResult<()>` which may be `Ok` while still having reported
173/// errors, this type always returns `Err` if an error (fatal or not) was reported.
174pub type VerifierResult<T> = Result<T, VerifierErrors>;
175
176/// List of verifier errors.
177#[derive(Error, Debug, Default, PartialEq, Eq, Clone)]
178pub struct VerifierErrors(pub Vec<VerifierError>);
179
180impl VerifierErrors {
181    /// Return a new `VerifierErrors` struct.
182    #[inline]
183    pub fn new() -> Self {
184        Self(Vec::new())
185    }
186
187    /// Return whether no errors were reported.
188    #[inline]
189    pub fn is_empty(&self) -> bool {
190        self.0.is_empty()
191    }
192
193    /// Return whether one or more errors were reported.
194    #[inline]
195    pub fn has_error(&self) -> bool {
196        !self.0.is_empty()
197    }
198
199    /// Return a `VerifierStepResult` that is fatal if at least one error was reported,
200    /// and non-fatal otherwise.
201    #[inline]
202    pub fn as_result(&self) -> VerifierStepResult<()> {
203        if self.is_empty() {
204            Ok(())
205        } else {
206            Err(())
207        }
208    }
209
210    /// Report an error, adding it to the list of errors.
211    pub fn report(&mut self, error: impl Into<VerifierError>) {
212        self.0.push(error.into());
213    }
214
215    /// Report a fatal error and return `Err`.
216    pub fn fatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
217        self.report(error);
218        Err(())
219    }
220
221    /// Report a non-fatal error and return `Ok`.
222    pub fn nonfatal(&mut self, error: impl Into<VerifierError>) -> VerifierStepResult<()> {
223        self.report(error);
224        Ok(())
225    }
226}
227
228impl From<Vec<VerifierError>> for VerifierErrors {
229    fn from(v: Vec<VerifierError>) -> Self {
230        Self(v)
231    }
232}
233
234impl Into<Vec<VerifierError>> for VerifierErrors {
235    fn into(self) -> Vec<VerifierError> {
236        self.0
237    }
238}
239
240impl Into<VerifierResult<()>> for VerifierErrors {
241    fn into(self) -> VerifierResult<()> {
242        if self.is_empty() {
243            Ok(())
244        } else {
245            Err(self)
246        }
247    }
248}
249
250impl Display for VerifierErrors {
251    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
252        for err in &self.0 {
253            writeln!(f, "- {}", err)?;
254        }
255        Ok(())
256    }
257}
258
259/// Verify `func`.
260pub fn verify_function<'a, FOI: Into<FlagsOrIsa<'a>>>(
261    func: &Function,
262    fisa: FOI,
263) -> VerifierResult<()> {
264    let _tt = timing::verifier();
265    let mut errors = VerifierErrors::default();
266    let verifier = Verifier::new(func, fisa.into());
267    let result = verifier.run(&mut errors);
268    if errors.is_empty() {
269        result.unwrap();
270        Ok(())
271    } else {
272        Err(errors)
273    }
274}
275
276/// Verify `func` after checking the integrity of associated context data structures `cfg` and
277/// `domtree`.
278pub fn verify_context<'a, FOI: Into<FlagsOrIsa<'a>>>(
279    func: &Function,
280    cfg: &ControlFlowGraph,
281    domtree: &DominatorTree,
282    fisa: FOI,
283    errors: &mut VerifierErrors,
284) -> VerifierStepResult<()> {
285    let _tt = timing::verifier();
286    let verifier = Verifier::new(func, fisa.into());
287    if cfg.is_valid() {
288        verifier.cfg_integrity(cfg, errors)?;
289    }
290    if domtree.is_valid() {
291        verifier.domtree_integrity(domtree, errors)?;
292    }
293    verifier.run(errors)
294}
295
296struct Verifier<'a> {
297    func: &'a Function,
298    expected_cfg: ControlFlowGraph,
299    expected_domtree: DominatorTree,
300    isa: Option<&'a dyn TargetIsa>,
301}
302
303impl<'a> Verifier<'a> {
304    pub fn new(func: &'a Function, fisa: FlagsOrIsa<'a>) -> Self {
305        let expected_cfg = ControlFlowGraph::with_function(func);
306        let expected_domtree = DominatorTree::with_function(func, &expected_cfg);
307        Self {
308            func,
309            expected_cfg,
310            expected_domtree,
311            isa: fisa.isa,
312        }
313    }
314
315    /// Determine a contextual error string for an instruction.
316    #[inline]
317    fn context(&self, inst: Inst) -> String {
318        self.func.dfg.display_inst(inst, self.isa).to_string()
319    }
320
321    // Check for:
322    //  - cycles in the global value declarations.
323    //  - use of 'vmctx' when no special parameter declares it.
324    fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
325        let mut cycle_seen = false;
326        let mut seen = SparseSet::new();
327
328        'gvs: for gv in self.func.global_values.keys() {
329            seen.clear();
330            seen.insert(gv);
331
332            let mut cur = gv;
333            loop {
334                match self.func.global_values[cur] {
335                    ir::GlobalValueData::Load { base, .. }
336                    | ir::GlobalValueData::IAddImm { base, .. } => {
337                        if seen.insert(base).is_some() {
338                            if !cycle_seen {
339                                errors.report((
340                                    gv,
341                                    format!("global value cycle: {}", DisplayList(seen.as_slice())),
342                                ));
343                                // ensures we don't report the cycle multiple times
344                                cycle_seen = true;
345                            }
346                            continue 'gvs;
347                        }
348
349                        cur = base;
350                    }
351                    _ => break,
352                }
353            }
354
355            match self.func.global_values[gv] {
356                ir::GlobalValueData::VMContext { .. } => {
357                    if self
358                        .func
359                        .special_param(ir::ArgumentPurpose::VMContext)
360                        .is_none()
361                    {
362                        errors.report((gv, format!("undeclared vmctx reference {}", gv)));
363                    }
364                }
365                ir::GlobalValueData::IAddImm {
366                    base, global_type, ..
367                } => {
368                    if !global_type.is_int() {
369                        errors.report((
370                            gv,
371                            format!("iadd_imm global value with non-int type {}", global_type),
372                        ));
373                    } else if let Some(isa) = self.isa {
374                        let base_type = self.func.global_values[base].global_type(isa);
375                        if global_type != base_type {
376                            errors.report((
377                                gv,
378                                format!(
379                                    "iadd_imm type {} differs from operand type {}",
380                                    global_type, base_type
381                                ),
382                            ));
383                        }
384                    }
385                }
386                ir::GlobalValueData::Load { base, .. } => {
387                    if let Some(isa) = self.isa {
388                        let base_type = self.func.global_values[base].global_type(isa);
389                        let pointer_type = isa.pointer_type();
390                        if base_type != pointer_type {
391                            errors.report((
392                                gv,
393                                format!(
394                                    "base {} has type {}, which is not the pointer type {}",
395                                    base, base_type, pointer_type
396                                ),
397                            ));
398                        }
399                    }
400                }
401                _ => {}
402            }
403        }
404
405        // Invalid global values shouldn't stop us from verifying the rest of the function
406        Ok(())
407    }
408
409    fn verify_heaps(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
410        if let Some(isa) = self.isa {
411            for (heap, heap_data) in &self.func.heaps {
412                let base = heap_data.base;
413                if !self.func.global_values.is_valid(base) {
414                    return errors.nonfatal((heap, format!("invalid base global value {}", base)));
415                }
416
417                let pointer_type = isa.pointer_type();
418                let base_type = self.func.global_values[base].global_type(isa);
419                if base_type != pointer_type {
420                    errors.report((
421                        heap,
422                        format!(
423                            "heap base has type {}, which is not the pointer type {}",
424                            base_type, pointer_type
425                        ),
426                    ));
427                }
428
429                if let ir::HeapStyle::Dynamic { bound_gv, .. } = heap_data.style {
430                    if !self.func.global_values.is_valid(bound_gv) {
431                        return errors
432                            .nonfatal((heap, format!("invalid bound global value {}", bound_gv)));
433                    }
434
435                    let index_type = heap_data.index_type;
436                    let bound_type = self.func.global_values[bound_gv].global_type(isa);
437                    if index_type != bound_type {
438                        errors.report((
439                            heap,
440                            format!(
441                                "heap index type {} differs from the type of its bound, {}",
442                                index_type, bound_type
443                            ),
444                        ));
445                    }
446                }
447            }
448        }
449
450        Ok(())
451    }
452
453    fn verify_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
454        if let Some(isa) = self.isa {
455            for (table, table_data) in &self.func.tables {
456                let base = table_data.base_gv;
457                if !self.func.global_values.is_valid(base) {
458                    return errors.nonfatal((table, format!("invalid base global value {}", base)));
459                }
460
461                let pointer_type = isa.pointer_type();
462                let base_type = self.func.global_values[base].global_type(isa);
463                if base_type != pointer_type {
464                    errors.report((
465                        table,
466                        format!(
467                            "table base has type {}, which is not the pointer type {}",
468                            base_type, pointer_type
469                        ),
470                    ));
471                }
472
473                let bound_gv = table_data.bound_gv;
474                if !self.func.global_values.is_valid(bound_gv) {
475                    return errors
476                        .nonfatal((table, format!("invalid bound global value {}", bound_gv)));
477                }
478
479                let index_type = table_data.index_type;
480                let bound_type = self.func.global_values[bound_gv].global_type(isa);
481                if index_type != bound_type {
482                    errors.report((
483                        table,
484                        format!(
485                            "table index type {} differs from the type of its bound, {}",
486                            index_type, bound_type
487                        ),
488                    ));
489                }
490            }
491        }
492
493        Ok(())
494    }
495
496    fn verify_jump_tables(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
497        for (jt, jt_data) in &self.func.jump_tables {
498            for &ebb in jt_data.iter() {
499                self.verify_ebb(jt, ebb, errors)?;
500            }
501        }
502        Ok(())
503    }
504
505    /// Check that the given EBB can be encoded as a BB, by checking that only
506    /// branching instructions are ending the EBB.
507    #[cfg(feature = "basic-blocks")]
508    fn encodable_as_bb(&self, ebb: Ebb, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
509        match self.func.is_ebb_basic(ebb) {
510            Ok(()) => Ok(()),
511            Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
512        }
513    }
514
515    fn ebb_integrity(
516        &self,
517        ebb: Ebb,
518        inst: Inst,
519        errors: &mut VerifierErrors,
520    ) -> VerifierStepResult<()> {
521        let is_terminator = self.func.dfg[inst].opcode().is_terminator();
522        let is_last_inst = self.func.layout.last_inst(ebb) == Some(inst);
523
524        if is_terminator && !is_last_inst {
525            // Terminating instructions only occur at the end of blocks.
526            return errors.fatal((
527                inst,
528                self.context(inst),
529                format!(
530                    "a terminator instruction was encountered before the end of {}",
531                    ebb
532                ),
533            ));
534        }
535        if is_last_inst && !is_terminator {
536            return errors.fatal((ebb, "block does not end in a terminator instruction"));
537        }
538
539        // Instructions belong to the correct ebb.
540        let inst_ebb = self.func.layout.inst_ebb(inst);
541        if inst_ebb != Some(ebb) {
542            return errors.fatal((
543                inst,
544                self.context(inst),
545                format!("should belong to {} not {:?}", ebb, inst_ebb),
546            ));
547        }
548
549        // Parameters belong to the correct ebb.
550        for &arg in self.func.dfg.ebb_params(ebb) {
551            match self.func.dfg.value_def(arg) {
552                ValueDef::Param(arg_ebb, _) => {
553                    if ebb != arg_ebb {
554                        return errors.fatal((arg, format!("does not belong to {}", ebb)));
555                    }
556                }
557                _ => {
558                    return errors.fatal((arg, "expected an argument, found a result"));
559                }
560            }
561        }
562
563        Ok(())
564    }
565
566    fn instruction_integrity(
567        &self,
568        inst: Inst,
569        errors: &mut VerifierErrors,
570    ) -> VerifierStepResult<()> {
571        let inst_data = &self.func.dfg[inst];
572        let dfg = &self.func.dfg;
573
574        // The instruction format matches the opcode
575        if inst_data.opcode().format() != InstructionFormat::from(inst_data) {
576            return errors.fatal((
577                inst,
578                self.context(inst),
579                "instruction opcode doesn't match instruction format",
580            ));
581        }
582
583        let num_fixed_results = inst_data.opcode().constraints().num_fixed_results();
584        // var_results is 0 if we aren't a call instruction
585        let var_results = dfg
586            .call_signature(inst)
587            .map_or(0, |sig| dfg.signatures[sig].returns.len());
588        let total_results = num_fixed_results + var_results;
589
590        // All result values for multi-valued instructions are created
591        let got_results = dfg.inst_results(inst).len();
592        if got_results != total_results {
593            return errors.fatal((
594                inst,
595                self.context(inst),
596                format!(
597                    "expected {} result values, found {}",
598                    total_results, got_results,
599                ),
600            ));
601        }
602
603        self.verify_entity_references(inst, errors)
604    }
605
606    fn verify_entity_references(
607        &self,
608        inst: Inst,
609        errors: &mut VerifierErrors,
610    ) -> VerifierStepResult<()> {
611        use crate::ir::instructions::InstructionData::*;
612
613        for &arg in self.func.dfg.inst_args(inst) {
614            self.verify_inst_arg(inst, arg, errors)?;
615
616            // All used values must be attached to something.
617            let original = self.func.dfg.resolve_aliases(arg);
618            if !self.func.dfg.value_is_attached(original) {
619                errors.report((
620                    inst,
621                    self.context(inst),
622                    format!("argument {} -> {} is not attached", arg, original),
623                ));
624            }
625        }
626
627        for &res in self.func.dfg.inst_results(inst) {
628            self.verify_inst_result(inst, res, errors)?;
629        }
630
631        match self.func.dfg[inst] {
632            MultiAry { ref args, .. } => {
633                self.verify_value_list(inst, args, errors)?;
634            }
635            Jump {
636                destination,
637                ref args,
638                ..
639            }
640            | Branch {
641                destination,
642                ref args,
643                ..
644            }
645            | BranchInt {
646                destination,
647                ref args,
648                ..
649            }
650            | BranchFloat {
651                destination,
652                ref args,
653                ..
654            }
655            | BranchIcmp {
656                destination,
657                ref args,
658                ..
659            } => {
660                self.verify_ebb(inst, destination, errors)?;
661                self.verify_value_list(inst, args, errors)?;
662            }
663            BranchTable {
664                table, destination, ..
665            } => {
666                self.verify_ebb(inst, destination, errors)?;
667                self.verify_jump_table(inst, table, errors)?;
668            }
669            BranchTableBase { table, .. }
670            | BranchTableEntry { table, .. }
671            | IndirectJump { table, .. } => {
672                self.verify_jump_table(inst, table, errors)?;
673            }
674            Call {
675                func_ref, ref args, ..
676            } => {
677                self.verify_func_ref(inst, func_ref, errors)?;
678                self.verify_value_list(inst, args, errors)?;
679            }
680            CallIndirect {
681                sig_ref, ref args, ..
682            } => {
683                self.verify_sig_ref(inst, sig_ref, errors)?;
684                self.verify_value_list(inst, args, errors)?;
685            }
686            FuncAddr { func_ref, .. } => {
687                self.verify_func_ref(inst, func_ref, errors)?;
688            }
689            StackLoad { stack_slot, .. } | StackStore { stack_slot, .. } => {
690                self.verify_stack_slot(inst, stack_slot, errors)?;
691            }
692            UnaryGlobalValue { global_value, .. } => {
693                self.verify_global_value(inst, global_value, errors)?;
694            }
695            HeapAddr { heap, .. } => {
696                self.verify_heap(inst, heap, errors)?;
697            }
698            TableAddr { table, .. } => {
699                self.verify_table(inst, table, errors)?;
700            }
701            RegSpill { dst, .. } => {
702                self.verify_stack_slot(inst, dst, errors)?;
703            }
704            RegFill { src, .. } => {
705                self.verify_stack_slot(inst, src, errors)?;
706            }
707            LoadComplex { ref args, .. } => {
708                self.verify_value_list(inst, args, errors)?;
709            }
710            StoreComplex { ref args, .. } => {
711                self.verify_value_list(inst, args, errors)?;
712            }
713
714            NullAry {
715                opcode: Opcode::GetPinnedReg,
716            }
717            | Unary {
718                opcode: Opcode::SetPinnedReg,
719                ..
720            } => {
721                if let Some(isa) = &self.isa {
722                    if !isa.flags().enable_pinned_reg() {
723                        return errors.fatal((
724                            inst,
725                            self.context(inst),
726                            "GetPinnedReg/SetPinnedReg cannot be used without enable_pinned_reg",
727                        ));
728                    }
729                } else {
730                    return errors.fatal((
731                        inst,
732                        self.context(inst),
733                        "GetPinnedReg/SetPinnedReg need an ISA!",
734                    ));
735                }
736            }
737
738            Unary {
739                opcode: Opcode::Bitcast,
740                arg,
741            } => {
742                self.verify_bitcast(inst, arg, errors)?;
743            }
744
745            // Exhaustive list so we can't forget to add new formats
746            Unary { .. }
747            | UnaryImm { .. }
748            | UnaryIeee32 { .. }
749            | UnaryIeee64 { .. }
750            | UnaryBool { .. }
751            | Binary { .. }
752            | BinaryImm { .. }
753            | Ternary { .. }
754            | InsertLane { .. }
755            | ExtractLane { .. }
756            | UnaryConst { .. }
757            | Shuffle { .. }
758            | IntCompare { .. }
759            | IntCompareImm { .. }
760            | IntCond { .. }
761            | FloatCompare { .. }
762            | FloatCond { .. }
763            | IntSelect { .. }
764            | Load { .. }
765            | Store { .. }
766            | RegMove { .. }
767            | CopySpecial { .. }
768            | CopyToSsa { .. }
769            | Trap { .. }
770            | CondTrap { .. }
771            | IntCondTrap { .. }
772            | FloatCondTrap { .. }
773            | NullAry { .. } => {}
774        }
775
776        Ok(())
777    }
778
779    fn verify_ebb(
780        &self,
781        loc: impl Into<AnyEntity>,
782        e: Ebb,
783        errors: &mut VerifierErrors,
784    ) -> VerifierStepResult<()> {
785        if !self.func.dfg.ebb_is_valid(e) || !self.func.layout.is_ebb_inserted(e) {
786            return errors.fatal((loc, format!("invalid ebb reference {}", e)));
787        }
788        if let Some(entry_block) = self.func.layout.entry_block() {
789            if e == entry_block {
790                return errors.fatal((loc, format!("invalid reference to entry ebb {}", e)));
791            }
792        }
793        Ok(())
794    }
795
796    fn verify_sig_ref(
797        &self,
798        inst: Inst,
799        s: SigRef,
800        errors: &mut VerifierErrors,
801    ) -> VerifierStepResult<()> {
802        if !self.func.dfg.signatures.is_valid(s) {
803            errors.fatal((
804                inst,
805                self.context(inst),
806                format!("invalid signature reference {}", s),
807            ))
808        } else {
809            Ok(())
810        }
811    }
812
813    fn verify_func_ref(
814        &self,
815        inst: Inst,
816        f: FuncRef,
817        errors: &mut VerifierErrors,
818    ) -> VerifierStepResult<()> {
819        if !self.func.dfg.ext_funcs.is_valid(f) {
820            errors.nonfatal((
821                inst,
822                self.context(inst),
823                format!("invalid function reference {}", f),
824            ))
825        } else {
826            Ok(())
827        }
828    }
829
830    fn verify_stack_slot(
831        &self,
832        inst: Inst,
833        ss: StackSlot,
834        errors: &mut VerifierErrors,
835    ) -> VerifierStepResult<()> {
836        if !self.func.stack_slots.is_valid(ss) {
837            errors.nonfatal((
838                inst,
839                self.context(inst),
840                format!("invalid stack slot {}", ss),
841            ))
842        } else {
843            Ok(())
844        }
845    }
846
847    fn verify_global_value(
848        &self,
849        inst: Inst,
850        gv: GlobalValue,
851        errors: &mut VerifierErrors,
852    ) -> VerifierStepResult<()> {
853        if !self.func.global_values.is_valid(gv) {
854            errors.nonfatal((
855                inst,
856                self.context(inst),
857                format!("invalid global value {}", gv),
858            ))
859        } else {
860            Ok(())
861        }
862    }
863
864    fn verify_heap(
865        &self,
866        inst: Inst,
867        heap: ir::Heap,
868        errors: &mut VerifierErrors,
869    ) -> VerifierStepResult<()> {
870        if !self.func.heaps.is_valid(heap) {
871            errors.nonfatal((inst, self.context(inst), format!("invalid heap {}", heap)))
872        } else {
873            Ok(())
874        }
875    }
876
877    fn verify_table(
878        &self,
879        inst: Inst,
880        table: ir::Table,
881        errors: &mut VerifierErrors,
882    ) -> VerifierStepResult<()> {
883        if !self.func.tables.is_valid(table) {
884            errors.nonfatal((inst, self.context(inst), format!("invalid table {}", table)))
885        } else {
886            Ok(())
887        }
888    }
889
890    fn verify_value_list(
891        &self,
892        inst: Inst,
893        l: &ValueList,
894        errors: &mut VerifierErrors,
895    ) -> VerifierStepResult<()> {
896        if !l.is_valid(&self.func.dfg.value_lists) {
897            errors.nonfatal((
898                inst,
899                self.context(inst),
900                format!("invalid value list reference {:?}", l),
901            ))
902        } else {
903            Ok(())
904        }
905    }
906
907    fn verify_jump_table(
908        &self,
909        inst: Inst,
910        j: JumpTable,
911        errors: &mut VerifierErrors,
912    ) -> VerifierStepResult<()> {
913        if !self.func.jump_tables.is_valid(j) {
914            errors.nonfatal((
915                inst,
916                self.context(inst),
917                format!("invalid jump table reference {}", j),
918            ))
919        } else {
920            Ok(())
921        }
922    }
923
924    fn verify_value(
925        &self,
926        loc_inst: Inst,
927        v: Value,
928        errors: &mut VerifierErrors,
929    ) -> VerifierStepResult<()> {
930        let dfg = &self.func.dfg;
931        if !dfg.value_is_valid(v) {
932            errors.nonfatal((
933                loc_inst,
934                self.context(loc_inst),
935                format!("invalid value reference {}", v),
936            ))
937        } else {
938            Ok(())
939        }
940    }
941
942    fn verify_inst_arg(
943        &self,
944        loc_inst: Inst,
945        v: Value,
946        errors: &mut VerifierErrors,
947    ) -> VerifierStepResult<()> {
948        self.verify_value(loc_inst, v, errors)?;
949
950        let dfg = &self.func.dfg;
951        let loc_ebb = self.func.layout.pp_ebb(loc_inst);
952        let is_reachable = self.expected_domtree.is_reachable(loc_ebb);
953
954        // SSA form
955        match dfg.value_def(v) {
956            ValueDef::Result(def_inst, _) => {
957                // Value is defined by an instruction that exists.
958                if !dfg.inst_is_valid(def_inst) {
959                    return errors.fatal((
960                        loc_inst,
961                        self.context(loc_inst),
962                        format!("{} is defined by invalid instruction {}", v, def_inst),
963                    ));
964                }
965                // Defining instruction is inserted in an EBB.
966                if self.func.layout.inst_ebb(def_inst) == None {
967                    return errors.fatal((
968                        loc_inst,
969                        self.context(loc_inst),
970                        format!("{} is defined by {} which has no EBB", v, def_inst),
971                    ));
972                }
973                // Defining instruction dominates the instruction that uses the value.
974                if is_reachable {
975                    if !self
976                        .expected_domtree
977                        .dominates(def_inst, loc_inst, &self.func.layout)
978                    {
979                        return errors.fatal((
980                            loc_inst,
981                            self.context(loc_inst),
982                            format!("uses value {} from non-dominating {}", v, def_inst),
983                        ));
984                    }
985                    if def_inst == loc_inst {
986                        return errors.fatal((
987                            loc_inst,
988                            self.context(loc_inst),
989                            format!("uses value {} from itself", v),
990                        ));
991                    }
992                }
993            }
994            ValueDef::Param(ebb, _) => {
995                // Value is defined by an existing EBB.
996                if !dfg.ebb_is_valid(ebb) {
997                    return errors.fatal((
998                        loc_inst,
999                        self.context(loc_inst),
1000                        format!("{} is defined by invalid EBB {}", v, ebb),
1001                    ));
1002                }
1003                // Defining EBB is inserted in the layout
1004                if !self.func.layout.is_ebb_inserted(ebb) {
1005                    return errors.fatal((
1006                        loc_inst,
1007                        self.context(loc_inst),
1008                        format!("{} is defined by {} which is not in the layout", v, ebb),
1009                    ));
1010                }
1011                // The defining EBB dominates the instruction using this value.
1012                if is_reachable
1013                    && !self
1014                        .expected_domtree
1015                        .dominates(ebb, loc_inst, &self.func.layout)
1016                {
1017                    return errors.fatal((
1018                        loc_inst,
1019                        self.context(loc_inst),
1020                        format!("uses value arg from non-dominating {}", ebb),
1021                    ));
1022                }
1023            }
1024        }
1025        Ok(())
1026    }
1027
1028    fn verify_inst_result(
1029        &self,
1030        loc_inst: Inst,
1031        v: Value,
1032        errors: &mut VerifierErrors,
1033    ) -> VerifierStepResult<()> {
1034        self.verify_value(loc_inst, v, errors)?;
1035
1036        match self.func.dfg.value_def(v) {
1037            ValueDef::Result(def_inst, _) => {
1038                if def_inst != loc_inst {
1039                    errors.fatal((
1040                        loc_inst,
1041                        self.context(loc_inst),
1042                        format!("instruction result {} is not defined by the instruction", v),
1043                    ))
1044                } else {
1045                    Ok(())
1046                }
1047            }
1048            ValueDef::Param(_, _) => errors.fatal((
1049                loc_inst,
1050                self.context(loc_inst),
1051                format!("instruction result {} is not defined by the instruction", v),
1052            )),
1053        }
1054    }
1055
1056    fn verify_bitcast(
1057        &self,
1058        inst: Inst,
1059        arg: Value,
1060        errors: &mut VerifierErrors,
1061    ) -> VerifierStepResult<()> {
1062        let typ = self.func.dfg.ctrl_typevar(inst);
1063        let value_type = self.func.dfg.value_type(arg);
1064
1065        if typ.lane_bits() < value_type.lane_bits() {
1066            errors.fatal((
1067                inst,
1068                format!(
1069                    "The bitcast argument {} doesn't fit in a type of {} bits",
1070                    arg,
1071                    typ.lane_bits()
1072                ),
1073            ))
1074        } else {
1075            Ok(())
1076        }
1077    }
1078
1079    fn domtree_integrity(
1080        &self,
1081        domtree: &DominatorTree,
1082        errors: &mut VerifierErrors,
1083    ) -> VerifierStepResult<()> {
1084        // We consider two `DominatorTree`s to be equal if they return the same immediate
1085        // dominator for each EBB. Therefore the current domtree is valid if it matches the freshly
1086        // computed one.
1087        for ebb in self.func.layout.ebbs() {
1088            let expected = self.expected_domtree.idom(ebb);
1089            let got = domtree.idom(ebb);
1090            if got != expected {
1091                return errors.fatal((
1092                    ebb,
1093                    format!(
1094                        "invalid domtree, expected idom({}) = {:?}, got {:?}",
1095                        ebb, expected, got
1096                    ),
1097                ));
1098            }
1099        }
1100        // We also verify if the postorder defined by `DominatorTree` is sane
1101        if domtree.cfg_postorder().len() != self.expected_domtree.cfg_postorder().len() {
1102            return errors.fatal((
1103                AnyEntity::Function,
1104                "incorrect number of Ebbs in postorder traversal",
1105            ));
1106        }
1107        for (index, (&test_ebb, &true_ebb)) in domtree
1108            .cfg_postorder()
1109            .iter()
1110            .zip(self.expected_domtree.cfg_postorder().iter())
1111            .enumerate()
1112        {
1113            if test_ebb != true_ebb {
1114                return errors.fatal((
1115                    test_ebb,
1116                    format!(
1117                        "invalid domtree, postorder ebb number {} should be {}, got {}",
1118                        index, true_ebb, test_ebb
1119                    ),
1120                ));
1121            }
1122        }
1123        // We verify rpo_cmp on pairs of adjacent ebbs in the postorder
1124        for (&prev_ebb, &next_ebb) in domtree.cfg_postorder().iter().adjacent_pairs() {
1125            if self
1126                .expected_domtree
1127                .rpo_cmp(prev_ebb, next_ebb, &self.func.layout)
1128                != Ordering::Greater
1129            {
1130                return errors.fatal((
1131                    next_ebb,
1132                    format!(
1133                        "invalid domtree, rpo_cmp does not says {} is greater than {}",
1134                        prev_ebb, next_ebb
1135                    ),
1136                ));
1137            }
1138        }
1139        Ok(())
1140    }
1141
1142    fn typecheck_entry_block_params(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
1143        if let Some(ebb) = self.func.layout.entry_block() {
1144            let expected_types = &self.func.signature.params;
1145            let ebb_param_count = self.func.dfg.num_ebb_params(ebb);
1146
1147            if ebb_param_count != expected_types.len() {
1148                return errors.fatal((
1149                    ebb,
1150                    format!(
1151                        "entry block parameters ({}) must match function signature ({})",
1152                        ebb_param_count,
1153                        expected_types.len()
1154                    ),
1155                ));
1156            }
1157
1158            for (i, &arg) in self.func.dfg.ebb_params(ebb).iter().enumerate() {
1159                let arg_type = self.func.dfg.value_type(arg);
1160                if arg_type != expected_types[i].value_type {
1161                    errors.report((
1162                        ebb,
1163                        format!(
1164                            "entry block parameter {} expected to have type {}, got {}",
1165                            i, expected_types[i], arg_type
1166                        ),
1167                    ));
1168                }
1169            }
1170        }
1171
1172        errors.as_result()
1173    }
1174
1175    fn typecheck(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
1176        let inst_data = &self.func.dfg[inst];
1177        let constraints = inst_data.opcode().constraints();
1178
1179        let ctrl_type = if let Some(value_typeset) = constraints.ctrl_typeset() {
1180            // For polymorphic opcodes, determine the controlling type variable first.
1181            let ctrl_type = self.func.dfg.ctrl_typevar(inst);
1182
1183            if !value_typeset.contains(ctrl_type) {
1184                errors.report((
1185                    inst,
1186                    self.context(inst),
1187                    format!("has an invalid controlling type {}", ctrl_type),
1188                ));
1189            }
1190
1191            ctrl_type
1192        } else {
1193            // Non-polymorphic instructions don't check the controlling type variable, so `Option`
1194            // is unnecessary and we can just make it `INVALID`.
1195            types::INVALID
1196        };
1197
1198        // Typechecking instructions is never fatal
1199        let _ = self.typecheck_results(inst, ctrl_type, errors);
1200        let _ = self.typecheck_fixed_args(inst, ctrl_type, errors);
1201        let _ = self.typecheck_variable_args(inst, errors);
1202        let _ = self.typecheck_return(inst, errors);
1203        let _ = self.typecheck_special(inst, ctrl_type, errors);
1204
1205        // Misuses of copy_nop instructions are fatal
1206        self.typecheck_copy_nop(inst, errors)?;
1207
1208        Ok(())
1209    }
1210
1211    fn typecheck_results(
1212        &self,
1213        inst: Inst,
1214        ctrl_type: Type,
1215        errors: &mut VerifierErrors,
1216    ) -> VerifierStepResult<()> {
1217        let mut i = 0;
1218        for &result in self.func.dfg.inst_results(inst) {
1219            let result_type = self.func.dfg.value_type(result);
1220            let expected_type = self.func.dfg.compute_result_type(inst, i, ctrl_type);
1221            if let Some(expected_type) = expected_type {
1222                if result_type != expected_type {
1223                    errors.report((
1224                        inst,
1225                        self.context(inst),
1226                        format!(
1227                            "expected result {} ({}) to have type {}, found {}",
1228                            i, result, expected_type, result_type
1229                        ),
1230                    ));
1231                }
1232            } else {
1233                return errors.nonfatal((
1234                    inst,
1235                    self.context(inst),
1236                    "has more result values than expected",
1237                ));
1238            }
1239            i += 1;
1240        }
1241
1242        // There aren't any more result types left.
1243        if self.func.dfg.compute_result_type(inst, i, ctrl_type) != None {
1244            return errors.nonfatal((
1245                inst,
1246                self.context(inst),
1247                "has fewer result values than expected",
1248            ));
1249        }
1250        Ok(())
1251    }
1252
1253    fn typecheck_fixed_args(
1254        &self,
1255        inst: Inst,
1256        ctrl_type: Type,
1257        errors: &mut VerifierErrors,
1258    ) -> VerifierStepResult<()> {
1259        let constraints = self.func.dfg[inst].opcode().constraints();
1260
1261        for (i, &arg) in self.func.dfg.inst_fixed_args(inst).iter().enumerate() {
1262            let arg_type = self.func.dfg.value_type(arg);
1263            match constraints.value_argument_constraint(i, ctrl_type) {
1264                ResolvedConstraint::Bound(expected_type) => {
1265                    if arg_type != expected_type {
1266                        errors.report((
1267                            inst,
1268                            self.context(inst),
1269                            format!(
1270                                "arg {} ({}) has type {}, expected {}",
1271                                i, arg, arg_type, expected_type
1272                            ),
1273                        ));
1274                    }
1275                }
1276                ResolvedConstraint::Free(type_set) => {
1277                    if !type_set.contains(arg_type) {
1278                        errors.report((
1279                            inst,
1280                            self.context(inst),
1281                            format!(
1282                                "arg {} ({}) with type {} failed to satisfy type set {:?}",
1283                                i, arg, arg_type, type_set
1284                            ),
1285                        ));
1286                    }
1287                }
1288            }
1289        }
1290        Ok(())
1291    }
1292
1293    fn typecheck_variable_args(
1294        &self,
1295        inst: Inst,
1296        errors: &mut VerifierErrors,
1297    ) -> VerifierStepResult<()> {
1298        match self.func.dfg.analyze_branch(inst) {
1299            BranchInfo::SingleDest(ebb, _) => {
1300                let iter = self
1301                    .func
1302                    .dfg
1303                    .ebb_params(ebb)
1304                    .iter()
1305                    .map(|&v| self.func.dfg.value_type(v));
1306                self.typecheck_variable_args_iterator(inst, iter, errors)?;
1307            }
1308            BranchInfo::Table(table, ebb) => {
1309                if let Some(ebb) = ebb {
1310                    let arg_count = self.func.dfg.num_ebb_params(ebb);
1311                    if arg_count != 0 {
1312                        return errors.nonfatal((
1313                            inst,
1314                            self.context(inst),
1315                            format!(
1316                                "takes no arguments, but had target {} with {} arguments",
1317                                ebb, arg_count,
1318                            ),
1319                        ));
1320                    }
1321                }
1322                for ebb in self.func.jump_tables[table].iter() {
1323                    let arg_count = self.func.dfg.num_ebb_params(*ebb);
1324                    if arg_count != 0 {
1325                        return errors.nonfatal((
1326                            inst,
1327                            self.context(inst),
1328                            format!(
1329                                "takes no arguments, but had target {} with {} arguments",
1330                                ebb, arg_count,
1331                            ),
1332                        ));
1333                    }
1334                }
1335            }
1336            BranchInfo::NotABranch => {}
1337        }
1338
1339        match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
1340            CallInfo::Direct(func_ref, _) => {
1341                let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
1342                let arg_types = self.func.dfg.signatures[sig_ref]
1343                    .params
1344                    .iter()
1345                    .map(|a| a.value_type);
1346                self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
1347                self.check_outgoing_args(inst, sig_ref, errors)?;
1348            }
1349            CallInfo::Indirect(sig_ref, _) => {
1350                let arg_types = self.func.dfg.signatures[sig_ref]
1351                    .params
1352                    .iter()
1353                    .map(|a| a.value_type);
1354                self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
1355                self.check_outgoing_args(inst, sig_ref, errors)?;
1356            }
1357            CallInfo::NotACall => {}
1358        }
1359        Ok(())
1360    }
1361
1362    fn typecheck_variable_args_iterator<I: Iterator<Item = Type>>(
1363        &self,
1364        inst: Inst,
1365        iter: I,
1366        errors: &mut VerifierErrors,
1367    ) -> VerifierStepResult<()> {
1368        let variable_args = self.func.dfg.inst_variable_args(inst);
1369        let mut i = 0;
1370
1371        for expected_type in iter {
1372            if i >= variable_args.len() {
1373                // Result count mismatch handled below, we want the full argument count first though
1374                i += 1;
1375                continue;
1376            }
1377            let arg = variable_args[i];
1378            let arg_type = self.func.dfg.value_type(arg);
1379            if expected_type != arg_type {
1380                errors.report((
1381                    inst,
1382                    self.context(inst),
1383                    format!(
1384                        "arg {} ({}) has type {}, expected {}",
1385                        i, variable_args[i], arg_type, expected_type
1386                    ),
1387                ));
1388            }
1389            i += 1;
1390        }
1391        if i != variable_args.len() {
1392            return errors.nonfatal((
1393                inst,
1394                self.context(inst),
1395                format!(
1396                    "mismatched argument count for `{}`: got {}, expected {}",
1397                    self.func.dfg.display_inst(inst, None),
1398                    variable_args.len(),
1399                    i,
1400                ),
1401            ));
1402        }
1403        Ok(())
1404    }
1405
1406    /// Check the locations assigned to outgoing call arguments.
1407    ///
1408    /// When a signature has been legalized, all values passed as outgoing arguments on the stack
1409    /// must be assigned to a matching `OutgoingArg` stack slot.
1410    fn check_outgoing_args(
1411        &self,
1412        inst: Inst,
1413        sig_ref: SigRef,
1414        errors: &mut VerifierErrors,
1415    ) -> VerifierStepResult<()> {
1416        let sig = &self.func.dfg.signatures[sig_ref];
1417
1418        let args = self.func.dfg.inst_variable_args(inst);
1419        let expected_args = &sig.params[..];
1420
1421        for (&arg, &abi) in args.iter().zip(expected_args) {
1422            // Value types have already been checked by `typecheck_variable_args_iterator()`.
1423            if let ArgumentLoc::Stack(offset) = abi.location {
1424                let arg_loc = self.func.locations[arg];
1425                if let ValueLoc::Stack(ss) = arg_loc {
1426                    // Argument value is assigned to a stack slot as expected.
1427                    self.verify_stack_slot(inst, ss, errors)?;
1428                    let slot = &self.func.stack_slots[ss];
1429                    if slot.kind != StackSlotKind::OutgoingArg {
1430                        return errors.fatal((
1431                            inst,
1432                            self.context(inst),
1433                            format!(
1434                                "Outgoing stack argument {} in wrong stack slot: {} = {}",
1435                                arg, ss, slot,
1436                            ),
1437                        ));
1438                    }
1439                    if slot.offset != Some(offset) {
1440                        return errors.fatal((
1441                            inst,
1442                            self.context(inst),
1443                            format!(
1444                                "Outgoing stack argument {} should have offset {}: {} = {}",
1445                                arg, offset, ss, slot,
1446                            ),
1447                        ));
1448                    }
1449                    if slot.size != abi.value_type.bytes() {
1450                        return errors.fatal((
1451                            inst,
1452                            self.context(inst),
1453                            format!(
1454                                "Outgoing stack argument {} wrong size for {}: {} = {}",
1455                                arg, abi.value_type, ss, slot,
1456                            ),
1457                        ));
1458                    }
1459                } else {
1460                    let reginfo = self.isa.map(|i| i.register_info());
1461                    return errors.fatal((
1462                        inst,
1463                        self.context(inst),
1464                        format!(
1465                            "Outgoing stack argument {} in wrong location: {}",
1466                            arg,
1467                            arg_loc.display(reginfo.as_ref())
1468                        ),
1469                    ));
1470                }
1471            }
1472        }
1473        Ok(())
1474    }
1475
1476    fn typecheck_return(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
1477        if self.func.dfg[inst].opcode().is_return() {
1478            let args = self.func.dfg.inst_variable_args(inst);
1479            let expected_types = &self.func.signature.returns;
1480            if args.len() != expected_types.len() {
1481                return errors.nonfatal((
1482                    inst,
1483                    self.context(inst),
1484                    "arguments of return must match function signature",
1485                ));
1486            }
1487            for (i, (&arg, &expected_type)) in args.iter().zip(expected_types).enumerate() {
1488                let arg_type = self.func.dfg.value_type(arg);
1489                if arg_type != expected_type.value_type {
1490                    errors.report((
1491                        inst,
1492                        self.context(inst),
1493                        format!(
1494                            "arg {} ({}) has type {}, must match function signature of {}",
1495                            i, arg, arg_type, expected_type
1496                        ),
1497                    ));
1498                }
1499            }
1500        }
1501        Ok(())
1502    }
1503
1504    // Check special-purpose type constraints that can't be expressed in the normal opcode
1505    // constraints.
1506    fn typecheck_special(
1507        &self,
1508        inst: Inst,
1509        ctrl_type: Type,
1510        errors: &mut VerifierErrors,
1511    ) -> VerifierStepResult<()> {
1512        match self.func.dfg[inst] {
1513            ir::InstructionData::Unary { opcode, arg } => {
1514                let arg_type = self.func.dfg.value_type(arg);
1515                match opcode {
1516                    Opcode::Bextend | Opcode::Uextend | Opcode::Sextend | Opcode::Fpromote => {
1517                        if arg_type.lane_count() != ctrl_type.lane_count() {
1518                            return errors.nonfatal((
1519                                inst,
1520                                self.context(inst),
1521                                format!(
1522                                    "input {} and output {} must have same number of lanes",
1523                                    arg_type, ctrl_type,
1524                                ),
1525                            ));
1526                        }
1527                        if arg_type.lane_bits() >= ctrl_type.lane_bits() {
1528                            return errors.nonfatal((
1529                                inst,
1530                                self.context(inst),
1531                                format!(
1532                                    "input {} must be smaller than output {}",
1533                                    arg_type, ctrl_type,
1534                                ),
1535                            ));
1536                        }
1537                    }
1538                    Opcode::Breduce | Opcode::Ireduce | Opcode::Fdemote => {
1539                        if arg_type.lane_count() != ctrl_type.lane_count() {
1540                            return errors.nonfatal((
1541                                inst,
1542                                self.context(inst),
1543                                format!(
1544                                    "input {} and output {} must have same number of lanes",
1545                                    arg_type, ctrl_type,
1546                                ),
1547                            ));
1548                        }
1549                        if arg_type.lane_bits() <= ctrl_type.lane_bits() {
1550                            return errors.nonfatal((
1551                                inst,
1552                                self.context(inst),
1553                                format!(
1554                                    "input {} must be larger than output {}",
1555                                    arg_type, ctrl_type,
1556                                ),
1557                            ));
1558                        }
1559                    }
1560                    _ => {}
1561                }
1562            }
1563            ir::InstructionData::HeapAddr { heap, arg, .. } => {
1564                let index_type = self.func.dfg.value_type(arg);
1565                let heap_index_type = self.func.heaps[heap].index_type;
1566                if index_type != heap_index_type {
1567                    return errors.nonfatal((
1568                        inst,
1569                        self.context(inst),
1570                        format!(
1571                            "index type {} differs from heap index type {}",
1572                            index_type, heap_index_type,
1573                        ),
1574                    ));
1575                }
1576            }
1577            ir::InstructionData::TableAddr { table, arg, .. } => {
1578                let index_type = self.func.dfg.value_type(arg);
1579                let table_index_type = self.func.tables[table].index_type;
1580                if index_type != table_index_type {
1581                    return errors.nonfatal((
1582                        inst,
1583                        self.context(inst),
1584                        format!(
1585                            "index type {} differs from table index type {}",
1586                            index_type, table_index_type,
1587                        ),
1588                    ));
1589                }
1590            }
1591            ir::InstructionData::UnaryGlobalValue { global_value, .. } => {
1592                if let Some(isa) = self.isa {
1593                    let inst_type = self.func.dfg.value_type(self.func.dfg.first_result(inst));
1594                    let global_type = self.func.global_values[global_value].global_type(isa);
1595                    if inst_type != global_type {
1596                        return errors.nonfatal((
1597                            inst, self.context(inst),
1598                            format!(
1599                                "global_value instruction with type {} references global value with type {}",
1600                                inst_type, global_type
1601                            )),
1602                        );
1603                    }
1604                }
1605            }
1606            _ => {}
1607        }
1608        Ok(())
1609    }
1610
1611    fn typecheck_copy_nop(
1612        &self,
1613        inst: Inst,
1614        errors: &mut VerifierErrors,
1615    ) -> VerifierStepResult<()> {
1616        if let InstructionData::Unary {
1617            opcode: Opcode::CopyNop,
1618            arg,
1619        } = self.func.dfg[inst]
1620        {
1621            let dst_vals = self.func.dfg.inst_results(inst);
1622            if dst_vals.len() != 1 {
1623                return errors.fatal((
1624                    inst,
1625                    self.context(inst),
1626                    "copy_nop must produce exactly one result",
1627                ));
1628            }
1629            let dst_val = dst_vals[0];
1630            if self.func.dfg.value_type(dst_val) != self.func.dfg.value_type(arg) {
1631                return errors.fatal((
1632                    inst,
1633                    self.context(inst),
1634                    "copy_nop src and dst types must be the same",
1635                ));
1636            }
1637            let src_loc = self.func.locations[arg];
1638            let dst_loc = self.func.locations[dst_val];
1639            let locs_ok = match (src_loc, dst_loc) {
1640                (ValueLoc::Stack(src_slot), ValueLoc::Stack(dst_slot)) => src_slot == dst_slot,
1641                _ => false,
1642            };
1643            if !locs_ok {
1644                return errors.fatal((
1645                    inst,
1646                    self.context(inst),
1647                    format!(
1648                        "copy_nop must refer to identical stack slots, but found {:?} vs {:?}",
1649                        src_loc, dst_loc,
1650                    ),
1651                ));
1652            }
1653        }
1654        Ok(())
1655    }
1656
1657    fn cfg_integrity(
1658        &self,
1659        cfg: &ControlFlowGraph,
1660        errors: &mut VerifierErrors,
1661    ) -> VerifierStepResult<()> {
1662        let mut expected_succs = BTreeSet::<Ebb>::new();
1663        let mut got_succs = BTreeSet::<Ebb>::new();
1664        let mut expected_preds = BTreeSet::<Inst>::new();
1665        let mut got_preds = BTreeSet::<Inst>::new();
1666
1667        for ebb in self.func.layout.ebbs() {
1668            expected_succs.extend(self.expected_cfg.succ_iter(ebb));
1669            got_succs.extend(cfg.succ_iter(ebb));
1670
1671            let missing_succs: Vec<Ebb> = expected_succs.difference(&got_succs).cloned().collect();
1672            if !missing_succs.is_empty() {
1673                errors.report((
1674                    ebb,
1675                    format!("cfg lacked the following successor(s) {:?}", missing_succs),
1676                ));
1677                continue;
1678            }
1679
1680            let excess_succs: Vec<Ebb> = got_succs.difference(&expected_succs).cloned().collect();
1681            if !excess_succs.is_empty() {
1682                errors.report((
1683                    ebb,
1684                    format!("cfg had unexpected successor(s) {:?}", excess_succs),
1685                ));
1686                continue;
1687            }
1688
1689            expected_preds.extend(
1690                self.expected_cfg
1691                    .pred_iter(ebb)
1692                    .map(|BasicBlock { inst, .. }| inst),
1693            );
1694            got_preds.extend(cfg.pred_iter(ebb).map(|BasicBlock { inst, .. }| inst));
1695
1696            let missing_preds: Vec<Inst> = expected_preds.difference(&got_preds).cloned().collect();
1697            if !missing_preds.is_empty() {
1698                errors.report((
1699                    ebb,
1700                    format!(
1701                        "cfg lacked the following predecessor(s) {:?}",
1702                        missing_preds
1703                    ),
1704                ));
1705                continue;
1706            }
1707
1708            let excess_preds: Vec<Inst> = got_preds.difference(&expected_preds).cloned().collect();
1709            if !excess_preds.is_empty() {
1710                errors.report((
1711                    ebb,
1712                    format!("cfg had unexpected predecessor(s) {:?}", excess_preds),
1713                ));
1714                continue;
1715            }
1716
1717            expected_succs.clear();
1718            got_succs.clear();
1719            expected_preds.clear();
1720            got_preds.clear();
1721        }
1722        errors.as_result()
1723    }
1724
1725    /// If the verifier has been set up with an ISA, make sure that the recorded encoding for the
1726    /// instruction (if any) matches how the ISA would encode it.
1727    fn verify_encoding(&self, inst: Inst, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
1728        // When the encodings table is empty, we don't require any instructions to be encoded.
1729        //
1730        // Once some instructions are encoded, we require all side-effecting instructions to have a
1731        // legal encoding.
1732        if self.func.encodings.is_empty() {
1733            return Ok(());
1734        }
1735
1736        let isa = match self.isa {
1737            Some(isa) => isa,
1738            None => return Ok(()),
1739        };
1740
1741        let encoding = self.func.encodings[inst];
1742        if encoding.is_legal() {
1743            if self.func.dfg[inst].opcode().is_ghost() {
1744                return errors.nonfatal((
1745                    inst,
1746                    self.context(inst),
1747                    format!(
1748                        "Ghost instruction has an encoding: {}",
1749                        isa.encoding_info().display(encoding),
1750                    ),
1751                ));
1752            }
1753
1754            let mut encodings = isa
1755                .legal_encodings(
1756                    &self.func,
1757                    &self.func.dfg[inst],
1758                    self.func.dfg.ctrl_typevar(inst),
1759                )
1760                .peekable();
1761
1762            if encodings.peek().is_none() {
1763                return errors.nonfatal((
1764                    inst,
1765                    self.context(inst),
1766                    format!(
1767                        "Instruction failed to re-encode {}",
1768                        isa.encoding_info().display(encoding),
1769                    ),
1770                ));
1771            }
1772
1773            let has_valid_encoding = encodings.any(|possible_enc| encoding == possible_enc);
1774
1775            if !has_valid_encoding {
1776                let mut possible_encodings = String::new();
1777                let mut multiple_encodings = false;
1778
1779                for enc in isa.legal_encodings(
1780                    &self.func,
1781                    &self.func.dfg[inst],
1782                    self.func.dfg.ctrl_typevar(inst),
1783                ) {
1784                    if !possible_encodings.is_empty() {
1785                        possible_encodings.push_str(", ");
1786                        multiple_encodings = true;
1787                    }
1788                    possible_encodings
1789                        .write_fmt(format_args!("{}", isa.encoding_info().display(enc)))
1790                        .unwrap();
1791                }
1792
1793                return errors.nonfatal((
1794                    inst,
1795                    self.context(inst),
1796                    format!(
1797                        "encoding {} should be {}{}",
1798                        isa.encoding_info().display(encoding),
1799                        if multiple_encodings { "one of: " } else { "" },
1800                        possible_encodings,
1801                    ),
1802                ));
1803            }
1804            return Ok(());
1805        }
1806
1807        // Instruction is not encoded, so it is a ghost instruction.
1808        // Instructions with side effects are not allowed to be ghost instructions.
1809        let opcode = self.func.dfg[inst].opcode();
1810
1811        // The `fallthrough`, `fallthrough_return`, and `safepoint` instructions are not required
1812        // to have an encoding.
1813        if opcode == Opcode::Fallthrough
1814            || opcode == Opcode::FallthroughReturn
1815            || opcode == Opcode::Safepoint
1816        {
1817            return Ok(());
1818        }
1819
1820        // Check if this opcode must be encoded.
1821        let mut needs_enc = None;
1822        if opcode.is_branch() {
1823            needs_enc = Some("Branch");
1824        } else if opcode.is_call() {
1825            needs_enc = Some("Call");
1826        } else if opcode.is_return() {
1827            needs_enc = Some("Return");
1828        } else if opcode.can_store() {
1829            needs_enc = Some("Store");
1830        } else if opcode.can_trap() {
1831            needs_enc = Some("Trapping instruction");
1832        } else if opcode.other_side_effects() {
1833            needs_enc = Some("Instruction with side effects");
1834        }
1835
1836        if let Some(text) = needs_enc {
1837            // This instruction needs an encoding, so generate an error.
1838            // Provide the ISA default encoding as a hint.
1839            match self.func.encode(inst, isa) {
1840                Ok(enc) => {
1841                    return errors.nonfatal((
1842                        inst,
1843                        self.context(inst),
1844                        format!(
1845                            "{} must have an encoding (e.g., {})))",
1846                            text,
1847                            isa.encoding_info().display(enc),
1848                        ),
1849                    ));
1850                }
1851                Err(_) => {
1852                    return errors.nonfatal((
1853                        inst,
1854                        self.context(inst),
1855                        format!("{} must have an encoding", text),
1856                    ))
1857                }
1858            }
1859        }
1860
1861        Ok(())
1862    }
1863
1864    fn immediate_constraints(
1865        &self,
1866        inst: Inst,
1867        errors: &mut VerifierErrors,
1868    ) -> VerifierStepResult<()> {
1869        let inst_data = &self.func.dfg[inst];
1870
1871        match *inst_data {
1872            ir::InstructionData::Store { flags, .. }
1873            | ir::InstructionData::StoreComplex { flags, .. } => {
1874                if flags.readonly() {
1875                    errors.fatal((
1876                        inst,
1877                        self.context(inst),
1878                        "A store instruction cannot have the `readonly` MemFlag",
1879                    ))
1880                } else {
1881                    Ok(())
1882                }
1883            }
1884            ir::InstructionData::ExtractLane {
1885                opcode: ir::instructions::Opcode::Extractlane,
1886                lane,
1887                arg,
1888                ..
1889            }
1890            | ir::InstructionData::InsertLane {
1891                opcode: ir::instructions::Opcode::Insertlane,
1892                lane,
1893                args: [arg, _],
1894                ..
1895            } => {
1896                // We must be specific about the opcodes above because other instructions are using
1897                // the ExtractLane/InsertLane formats.
1898                let ty = self.func.dfg.value_type(arg);
1899                if u16::from(lane) >= ty.lane_count() {
1900                    errors.fatal((
1901                        inst,
1902                        self.context(inst),
1903                        format!("The lane {} does not index into the type {}", lane, ty,),
1904                    ))
1905                } else {
1906                    Ok(())
1907                }
1908            }
1909            _ => Ok(()),
1910        }
1911    }
1912
1913    fn verify_safepoint_unused(
1914        &self,
1915        inst: Inst,
1916        errors: &mut VerifierErrors,
1917    ) -> VerifierStepResult<()> {
1918        if let Some(isa) = self.isa {
1919            if !isa.flags().enable_safepoints() && self.func.dfg[inst].opcode() == Opcode::Safepoint
1920            {
1921                return errors.fatal((
1922                    inst,
1923                    self.context(inst),
1924                    "safepoint instruction cannot be used when it is not enabled.",
1925                ));
1926            }
1927        }
1928        Ok(())
1929    }
1930
1931    fn typecheck_function_signature(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
1932        self.func
1933            .signature
1934            .params
1935            .iter()
1936            .enumerate()
1937            .filter(|(_, &param)| param.value_type == types::INVALID)
1938            .for_each(|(i, _)| {
1939                errors.report((
1940                    AnyEntity::Function,
1941                    format!("Parameter at position {} has an invalid type", i),
1942                ));
1943            });
1944
1945        self.func
1946            .signature
1947            .returns
1948            .iter()
1949            .enumerate()
1950            .filter(|(_, &ret)| ret.value_type == types::INVALID)
1951            .for_each(|(i, _)| {
1952                errors.report((
1953                    AnyEntity::Function,
1954                    format!("Return value at position {} has an invalid type", i),
1955                ))
1956            });
1957
1958        if errors.has_error() {
1959            Err(())
1960        } else {
1961            Ok(())
1962        }
1963    }
1964
1965    pub fn run(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
1966        self.verify_global_values(errors)?;
1967        self.verify_heaps(errors)?;
1968        self.verify_tables(errors)?;
1969        self.verify_jump_tables(errors)?;
1970        self.typecheck_entry_block_params(errors)?;
1971        self.typecheck_function_signature(errors)?;
1972
1973        for ebb in self.func.layout.ebbs() {
1974            if self.func.layout.first_inst(ebb).is_none() {
1975                return errors.fatal((ebb, format!("{} cannot be empty", ebb)));
1976            }
1977            for inst in self.func.layout.ebb_insts(ebb) {
1978                self.ebb_integrity(ebb, inst, errors)?;
1979                self.instruction_integrity(inst, errors)?;
1980                self.verify_safepoint_unused(inst, errors)?;
1981                self.typecheck(inst, errors)?;
1982                self.verify_encoding(inst, errors)?;
1983                self.immediate_constraints(inst, errors)?;
1984            }
1985
1986            #[cfg(feature = "basic-blocks")]
1987            self.encodable_as_bb(ebb, errors)?;
1988        }
1989
1990        verify_flags(self.func, &self.expected_cfg, self.isa, errors)?;
1991
1992        if !errors.is_empty() {
1993            debug!(
1994                "Found verifier errors in function:\n{}",
1995                pretty_verifier_error(self.func, None, None, errors.clone())
1996            );
1997        }
1998
1999        Ok(())
2000    }
2001}
2002
2003#[cfg(test)]
2004mod tests {
2005    use super::{Verifier, VerifierError, VerifierErrors};
2006    use crate::entity::EntityList;
2007    use crate::ir::instructions::{InstructionData, Opcode};
2008    use crate::ir::{types, AbiParam, Function};
2009    use crate::settings;
2010
2011    macro_rules! assert_err_with_msg {
2012        ($e:expr, $msg:expr) => {
2013            match $e.0.get(0) {
2014                None => panic!("Expected an error"),
2015                Some(&VerifierError { ref message, .. }) => {
2016                    if !message.contains($msg) {
2017                        #[cfg(feature = "std")]
2018                        panic!(format!(
2019                            "'{}' did not contain the substring '{}'",
2020                            message, $msg
2021                        ));
2022                        #[cfg(not(feature = "std"))]
2023                        panic!("error message did not contain the expected substring");
2024                    }
2025                }
2026            }
2027        };
2028    }
2029
2030    #[test]
2031    fn empty() {
2032        let func = Function::new();
2033        let flags = &settings::Flags::new(settings::builder());
2034        let verifier = Verifier::new(&func, flags.into());
2035        let mut errors = VerifierErrors::default();
2036
2037        assert_eq!(verifier.run(&mut errors), Ok(()));
2038        assert!(errors.0.is_empty());
2039    }
2040
2041    #[test]
2042    fn bad_instruction_format() {
2043        let mut func = Function::new();
2044        let ebb0 = func.dfg.make_ebb();
2045        func.layout.append_ebb(ebb0);
2046        let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::UnaryImm {
2047            opcode: Opcode::F32const,
2048            imm: 0.into(),
2049        });
2050        func.layout.append_inst(nullary_with_bad_opcode, ebb0);
2051        func.layout.append_inst(
2052            func.dfg.make_inst(InstructionData::Jump {
2053                opcode: Opcode::Jump,
2054                destination: ebb0,
2055                args: EntityList::default(),
2056            }),
2057            ebb0,
2058        );
2059        let flags = &settings::Flags::new(settings::builder());
2060        let verifier = Verifier::new(&func, flags.into());
2061        let mut errors = VerifierErrors::default();
2062
2063        let _ = verifier.run(&mut errors);
2064
2065        assert_err_with_msg!(errors, "instruction format");
2066    }
2067
2068    #[test]
2069    fn test_function_invalid_param() {
2070        let mut func = Function::new();
2071        func.signature.params.push(AbiParam::new(types::INVALID));
2072
2073        let mut errors = VerifierErrors::default();
2074        let flags = &settings::Flags::new(settings::builder());
2075        let verifier = Verifier::new(&func, flags.into());
2076
2077        let _ = verifier.typecheck_function_signature(&mut errors);
2078        assert_err_with_msg!(errors, "Parameter at position 0 has an invalid type");
2079    }
2080
2081    #[test]
2082    fn test_function_invalid_return_value() {
2083        let mut func = Function::new();
2084        func.signature.returns.push(AbiParam::new(types::INVALID));
2085
2086        let mut errors = VerifierErrors::default();
2087        let flags = &settings::Flags::new(settings::builder());
2088        let verifier = Verifier::new(&func, flags.into());
2089
2090        let _ = verifier.typecheck_function_signature(&mut errors);
2091        assert_err_with_msg!(errors, "Return value at position 0 has an invalid type");
2092    }
2093
2094    #[test]
2095    fn test_printing_contextual_errors() {
2096        // Build function.
2097        let mut func = Function::new();
2098        let ebb0 = func.dfg.make_ebb();
2099        func.layout.append_ebb(ebb0);
2100
2101        // Build instruction: v0, v1 = iconst 42
2102        let inst = func.dfg.make_inst(InstructionData::UnaryImm {
2103            opcode: Opcode::Iconst,
2104            imm: 42.into(),
2105        });
2106        func.dfg.append_result(inst, types::I32);
2107        func.dfg.append_result(inst, types::I32);
2108        func.layout.append_inst(inst, ebb0);
2109
2110        // Setup verifier.
2111        let mut errors = VerifierErrors::default();
2112        let flags = &settings::Flags::new(settings::builder());
2113        let verifier = Verifier::new(&func, flags.into());
2114
2115        // Now the error message, when printed, should contain the instruction sequence causing the
2116        // error (i.e. v0, v1 = iconst.i32 42) and not only its entity value (i.e. inst0)
2117        let _ = verifier.typecheck_results(inst, types::I32, &mut errors);
2118        assert_eq!(
2119            format!("{}", errors.0[0]),
2120            "inst0 (v0, v1 = iconst.i32 42): has more result values than expected"
2121        )
2122    }
2123
2124    #[test]
2125    fn test_empty_ebb() {
2126        let mut func = Function::new();
2127        let ebb0 = func.dfg.make_ebb();
2128        func.layout.append_ebb(ebb0);
2129
2130        let flags = &settings::Flags::new(settings::builder());
2131        let verifier = Verifier::new(&func, flags.into());
2132        let mut errors = VerifierErrors::default();
2133        let _ = verifier.run(&mut errors);
2134
2135        assert_err_with_msg!(errors, "ebb0 cannot be empty");
2136    }
2137}