1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
//! Usage sample
//!
//! ```no_run
//! use aleph_alpha_client::{Client, TaskCompletion, How};
//!
//! #[tokio::main(flavor = "current_thread")]
//! async fn main() {
//! // Authenticate against API. Fetches token.
//! let client = Client::new("AA_API_TOKEN").unwrap();
//!
//! // Name of the model we we want to use. Large models give usually better answer, but are also
//! // more costly.
//! let model = "luminous-base";
//!
//! // The task we want to perform. Here we want to continue the sentence: "An apple a day ..."
//! let task = TaskCompletion::from_text("An apple a day", 10);
//!
//! // Retrieve the answer from the API
//! let response = client.execute(model, &task, &How::default()).await.unwrap();
//!
//! // Print entire sentence with completion
//! println!("An apple a day{}", response.completion);
//! }
//! ```
mod completion;
mod explanation;
mod http;
mod image_preprocessing;
mod prompt;
mod semantic_embedding;
use http::HttpClient;
use semantic_embedding::SemanticEmbeddingOutput;
pub use self::{
completion::{CompletionOutput, Sampling, Stopping, TaskCompletion},
explanation::{
Explanation, ExplanationOutput, Granularity, ImageScore, ItemExplanation,
PromptGranularity, TaskExplanation, TextScore,
},
http::{Error, Job, Task},
prompt::{Modality, Prompt},
semantic_embedding::{SemanticRepresentation, TaskSemanticEmbedding},
};
/// Execute Jobs against the Aleph Alpha API
pub struct Client {
/// This client does all the work of sending the requests and talking to the AA API. The only
/// additional knowledge added by this layer is that it knows about the individual jobs which
/// can be executed, which allows for an alternative non generic interface which might produce
/// easier to read code for the end user in many use cases.
http_client: HttpClient,
}
impl Client {
/// A new instance of an Aleph Alpha client helping you interact with the Aleph Alpha API.
pub fn new(api_token: &str) -> Result<Self, Error> {
Self::with_base_url("https://api.aleph-alpha.com".to_owned(), api_token)
}
/// In production you typically would want set this to <https://api.aleph-alpha.com>. Yet
/// you may want to use a different instances for testing.
pub fn with_base_url(host: String, api_token: &str) -> Result<Self, Error> {
let http_client = HttpClient::with_base_url(host, api_token)?;
Ok(Self { http_client })
}
/// Execute a task with the aleph alpha API and fetch its result.
///
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskCompletion, Error};
///
/// async fn print_completion() -> Result<(), Error> {
/// // Authenticate against API. Fetches token.
/// let client = Client::new("AA_API_TOKEN")?;
///
/// // Name of the model we we want to use. Large models give usually better answer, but are
/// // also slower and more costly.
/// let model = "luminous-base";
///
/// // The task we want to perform. Here we want to continue the sentence: "An apple a day
/// // ..."
/// let task = TaskCompletion::from_text("An apple a day", 10);
///
/// // Retrieve answer from API
/// let response = client.execute(model, &task, &How::default()).await?;
///
/// // Print entire sentence with completion
/// println!("An apple a day{}", response.completion);
/// Ok(())
/// }
/// ```
#[deprecated = "Please use output_of instead."]
pub async fn execute<T: Task>(
&self,
model: &str,
task: &T,
how: &How,
) -> Result<T::Output, Error> {
self.output_of(&task.with_model(model), how).await
}
/// Execute any task with the aleph alpha API and fetch its result. This is most usefull in
/// generic code then you want to execute arbitrary task types. Otherwise prefer methods taking
/// concrete tasks like [`Self::completion`] for improved readability.
pub async fn output_of<T: Job>(&self, task: &T, how: &How) -> Result<T::Output, Error> {
self.http_client.output_of(task, how).await
}
/// An embedding trying to capture the semantic meaning of a text. Cosine similarity can be used
/// find out how well two texts (or multimodal prompts) match. Useful for search usecases.
///
/// See the example for [`cosine_similarity`].
pub async fn semantic_embedding(
&self,
task: &TaskSemanticEmbedding<'_>,
how: &How,
) -> Result<SemanticEmbeddingOutput, Error> {
self.http_client.output_of(task, how).await
}
/// Instruct a model served by the aleph alpha API to continue writing a piece of text (or
/// multimodal document).
///
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskCompletion, Task, Error};
///
/// async fn print_completion() -> Result<(), Error> {
/// // Authenticate against API. Fetches token.
/// let client = Client::new("AA_API_TOKEN")?;
///
/// // Name of the model we we want to use. Large models give usually better answer, but are
/// // also slower and more costly.
/// let model = "luminous-base";
///
/// // The task we want to perform. Here we want to continue the sentence: "An apple a day
/// // ..."
/// let task = TaskCompletion::from_text("An apple a day", 10);
///
/// // Retrieve answer from API
/// let response = client.completion(&task, model, &How::default()).await?;
///
/// // Print entire sentence with completion
/// println!("An apple a day{}", response.completion);
/// Ok(())
/// }
/// ```
pub async fn completion(
&self,
task: &TaskCompletion<'_>,
model: &str,
how: &How,
) -> Result<CompletionOutput, Error> {
self.http_client
.output_of(&task.with_model(model), how)
.await
}
/// Returns an explanation given a prompt and a target (typically generated
/// by a previous completion request). The explanation describes how individual parts
/// of the prompt influenced the target.
///
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskCompletion, Task, Error, Granularity, TaskExplanation, Stopping, Prompt, Sampling};
///
/// async fn print_explanation() -> Result<(), Error> {
/// let client = Client::new("AA_API_TOKEN")?;
///
/// // Name of the model we we want to use. Large models give usually better answer, but are
/// // also slower and more costly.
/// let model = "luminous-base";
///
/// // input for the completion
/// let prompt = Prompt::from_text("An apple a day");
///
/// let task = TaskCompletion {
/// prompt: prompt.clone(),
/// stopping: Stopping::from_maximum_tokens(10),
/// sampling: Sampling::MOST_LIKELY,
/// };
/// let response = client.completion(&task, model, &How::default()).await?;
///
/// let task = TaskExplanation {
/// prompt: prompt, // same input as for completion
/// target: &response.completion, // output of completion
/// granularity: Granularity::default(),
/// };
/// let response = client.explanation(&task, model, &How::default()).await?;
///
/// dbg!(&response);
/// Ok(())
/// }
/// ```
pub async fn explanation(
&self,
task: &TaskExplanation<'_>,
model: &str,
how: &How,
) -> Result<ExplanationOutput, Error> {
self.http_client
.output_of(&task.with_model(model), how)
.await
}
}
/// Controls of how to execute a task
#[derive(Clone, PartialEq, Eq, Hash, Default)]
pub struct How {
/// Set this to `true` if you want to not put any load on the API in case it is already pretty
/// busy for the models you intend to use. All this does from the user perspective is that it
/// makes it more likely you get a `Busy` response from the server. One of the reasons you may
/// want to set is that you are an employee or associate of Aleph Alpha and want to perform
/// experiments without hurting paying customers.
pub be_nice: bool,
}
impl How {
/// Returns a new [How] based on the given one with the [How::be_nice] flag being set.
pub fn be_nice(self) -> Self {
Self { be_nice: true }
}
}
/// Intended to compare embeddings.
///
/// ```no_run
/// use aleph_alpha_client::{
/// Client, Prompt, TaskSemanticEmbedding, cosine_similarity, SemanticRepresentation, How
/// };
///
/// async fn semanitc_search_with_luminous_base(client: &Client) {
/// // Given
/// let robot_fact = Prompt::from_text(
/// "A robot is a machine—especially one programmable by a computer—capable of carrying out a \
/// complex series of actions automatically.",
/// );
/// let pizza_fact = Prompt::from_text(
/// "Pizza (Italian: [ˈpittsa], Neapolitan: [ˈpittsə]) is a dish of Italian origin consisting \
/// of a usually round, flat base of leavened wheat-based dough topped with tomatoes, cheese, \
/// and often various other ingredients (such as various types of sausage, anchovies, \
/// mushrooms, onions, olives, vegetables, meat, ham, etc.), which is then baked at a high \
/// temperature, traditionally in a wood-fired oven.",
/// );
/// let query = Prompt::from_text("What is Pizza?");
/// let how = How::default();
///
/// // When
/// let robot_embedding_task = TaskSemanticEmbedding {
/// prompt: robot_fact,
/// representation: SemanticRepresentation::Document,
/// compress_to_size: Some(128),
/// };
/// let robot_embedding = client.semantic_embedding(
/// &robot_embedding_task,
/// &how,
/// ).await.unwrap().embedding;
///
/// let pizza_embedding_task = TaskSemanticEmbedding {
/// prompt: pizza_fact,
/// representation: SemanticRepresentation::Document,
/// compress_to_size: Some(128),
/// };
/// let pizza_embedding = client.semantic_embedding(
/// &pizza_embedding_task,
/// &how,
/// ).await.unwrap().embedding;
///
/// let query_embedding_task = TaskSemanticEmbedding {
/// prompt: query,
/// representation: SemanticRepresentation::Query,
/// compress_to_size: Some(128),
/// };
/// let query_embedding = client.semantic_embedding(
/// &query_embedding_task,
/// &how,
/// ).await.unwrap().embedding;
/// let similarity_pizza = cosine_similarity(&query_embedding, &pizza_embedding);
/// println!("similarity pizza: {similarity_pizza}");
/// let similarity_robot = cosine_similarity(&query_embedding, &robot_embedding);
/// println!("similarity robot: {similarity_robot}");
///
/// // Then
///
/// // The fact about pizza should be more relevant to the "What is Pizza?" question than a fact
/// // about robots.
/// assert!(similarity_pizza > similarity_robot);
/// }
/// ```
pub fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
let ab: f32 = a.iter().zip(b).map(|(a, b)| a * b).sum();
let aa: f32 = a.iter().map(|a| a * a).sum();
let bb: f32 = b.iter().map(|b| b * b).sum();
let prod_len = (aa * bb).sqrt();
ab / prod_len
}
#[cfg(test)]
mod tests {
use crate::Prompt;
#[test]
fn ability_to_generate_prompt_in_local_function() {
fn local_function() -> Prompt<'static> {
Prompt::from_text(String::from("My test prompt"))
}
assert_eq!(Prompt::from_text("My test prompt"), local_function())
}
}