aleph_alpha_client/
completion.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
use std::collections::HashMap;

use serde::{Deserialize, Serialize};

use crate::{http::Task, Distribution, Logprob, Logprobs, Prompt, StreamTask, Usage};

/// Completes a prompt. E.g. continues a text.
pub struct TaskCompletion<'a> {
    /// The prompt (usually text) to be completed. Unconditional completion can be started with an
    /// empty string. The prompt may contain a zero shot or few shot task.
    pub prompt: Prompt<'a>,
    /// Controls in which circumstances the model will stop generating new tokens.
    pub stopping: Stopping<'a>,
    /// Sampling controls how the tokens ("words") are selected for the completion.
    pub sampling: Sampling,
    /// Whether to include special tokens (e.g. <|endoftext|>, <|python_tag|>) in the completion.
    pub special_tokens: bool,
    /// Wether you are interessted in the probabilities of the sampled tokens, or most likely
    /// tokens.
    pub logprobs: Logprobs,
}

impl<'a> TaskCompletion<'a> {
    /// Convenience constructor leaving most setting to default, just completing a given text
    pub fn from_text(text: &'a str) -> Self {
        TaskCompletion {
            prompt: Prompt::from_text(text),
            stopping: Stopping::NO_TOKEN_LIMIT,
            sampling: Sampling::MOST_LIKELY,
            special_tokens: false,
            logprobs: Logprobs::No,
        }
    }

    pub fn with_maximum_tokens(mut self, maximum_tokens: u32) -> Self {
        self.stopping.maximum_tokens = Some(maximum_tokens);
        self
    }

    pub fn with_stop_sequences(mut self, stop_sequences: &'a [&str]) -> Self {
        self.stopping.stop_sequences = stop_sequences;
        self
    }

    /// Include special tokens (e.g. <|endoftext|>, <|python_tag|>) in the completion.
    pub fn with_special_tokens(mut self) -> Self {
        self.special_tokens = true;
        self
    }

    pub fn with_logprobs(mut self, logprobs: Logprobs) -> Self {
        self.logprobs = logprobs;
        self
    }
}

/// Sampling controls how the tokens ("words") are selected for the completion.
pub struct Sampling {
    /// A temperature encourages the model to produce less probable outputs ("be more creative").
    /// Values are expected to be between 0 and 1. Try high values for a more random ("creative")
    /// response.
    pub temperature: Option<f64>,
    /// Introduces random sampling for generated tokens by randomly selecting the next token from
    /// the k most likely options. A value larger than 1 encourages the model to be more creative.
    /// Set to 0 to get the same behaviour as `None`.
    pub top_k: Option<u32>,
    /// Introduces random sampling for generated tokens by randomly selecting the next token from
    /// the smallest possible set of tokens whose cumulative probability exceeds the probability
    /// top_p. Set to 0 to get the same behaviour as `None`.
    pub top_p: Option<f64>,
    /// When specified, this number will decrease (or increase) the likelihood of repeating tokens
    /// that were mentioned prior in the completion. The penalty is cumulative. The more a token
    /// is mentioned in the completion, the more its probability will decrease.
    /// A negative value will increase the likelihood of repeating tokens.
    pub frequency_penalty: Option<f64>,
    /// The presence penalty reduces the likelihood of generating tokens that are already present
    /// in the generated text (repetition_penalties_include_completion=true) respectively the
    /// prompt (repetition_penalties_include_prompt=true). Presence penalty is independent of the
    /// number of occurrences. Increase the value to reduce the likelihood of repeating text.
    /// An operation like the following is applied:
    ///
    /// logits[t] -> logits[t] - 1 * penalty
    ///
    /// where logits[t] is the logits for any given token. Note that the formula is independent
    /// of the number of times that a token appears.
    pub presence_penalty: Option<f64>,
}

impl Sampling {
    /// Always chooses the token most likely to come next. Choose this if you do want close to
    /// deterministic behaviour and do not want to apply any penalties to avoid repetitions.
    pub const MOST_LIKELY: Self = Sampling {
        temperature: None,
        top_k: None,
        top_p: None,
        frequency_penalty: None,
        presence_penalty: None,
    };
}

impl Default for Sampling {
    fn default() -> Self {
        Self::MOST_LIKELY
    }
}

/// Controls the conditions under which the language models stops generating text.
pub struct Stopping<'a> {
    /// The maximum number of tokens to be generated. Completion will terminate after the maximum
    /// number of tokens is reached. Increase this value to allow for longer outputs. A text is split
    /// into tokens. Usually there are more tokens than words. The total number of tokens of prompt
    /// and maximum_tokens depends on the model.
    /// If maximum tokens is set to None, no outside limit is opposed on the number of maximum tokens.
    /// The model will generate tokens until it generates one of the specified stop_sequences or it
    /// reaches its technical limit, which usually is its context window.
    pub maximum_tokens: Option<u32>,
    /// List of strings which will stop generation if they are generated. Stop sequences are
    /// helpful in structured texts. E.g.: In a question answering scenario a text may consist of
    /// lines starting with either "Question: " or "Answer: " (alternating). After producing an
    /// answer, the model will be likely to generate "Question: ". "Question: " may therefore be used
    /// as stop sequence in order not to have the model generate more questions but rather restrict
    /// text generation to the answers.
    pub stop_sequences: &'a [&'a str],
}

impl<'a> Stopping<'a> {
    /// Only stop once the model reaches its technical limit, usually the context window.
    pub const NO_TOKEN_LIMIT: Self = Stopping {
        maximum_tokens: None,
        stop_sequences: &[],
    };

    /// Stop once the model has reached maximum_tokens.
    pub fn from_maximum_tokens(maximum_tokens: u32) -> Self {
        Self {
            maximum_tokens: Some(maximum_tokens),
            stop_sequences: &[],
        }
    }

    pub fn from_stop_sequences(stop_sequences: &'a [&'a str]) -> Self {
        Self {
            maximum_tokens: None,
            stop_sequences,
        }
    }
}

impl Default for Stopping<'_> {
    fn default() -> Self {
        Self::NO_TOKEN_LIMIT
    }
}

/// Body send to the Aleph Alpha API on the POST `/completion` Route
#[derive(Serialize, Debug)]
struct BodyCompletion<'a> {
    /// Name of the model tasked with completing the prompt. E.g. `luminous-base"`.
    pub model: &'a str,
    /// Prompt to complete. The modalities supported depend on `model`.
    pub prompt: Prompt<'a>,
    /// Limits the number of tokens, which are generated for the completion.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub maximum_tokens: Option<u32>,
    /// List of strings which will stop generation if they are generated. Stop sequences are
    /// helpful in structured texts. E.g.: In a question answering scenario a text may consist of
    /// lines starting with either "Question: " or "Answer: " (alternating). After producing an
    /// answer, the model will be likely to generate "Question: ". "Question: " may therefore be used
    /// as stop sequence in order not to have the model generate more questions but rather restrict
    /// text generation to the answers.
    #[serde(skip_serializing_if = "<[_]>::is_empty")]
    pub stop_sequences: &'a [&'a str],
    #[serde(skip_serializing_if = "Option::is_none")]
    pub temperature: Option<f64>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_k: Option<u32>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_p: Option<f64>,
    /// If true, the response will be streamed.
    #[serde(skip_serializing_if = "std::ops::Not::not")]
    pub stream: bool,
    /// Forces the raw completion of the model to be returned.
    /// For some models, the completion that was generated by the model may be optimized and
    /// returned in the completion field of the CompletionResponse.
    /// The raw completion, if returned, will contain the un-optimized completion.
    /// Setting tokens to true or log_probs to any value will also trigger the raw completion to be returned.
    #[serde(skip_serializing_if = "std::ops::Not::not")]
    pub raw_completion: bool,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub frequency_penalty: Option<f64>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub presence_penalty: Option<f64>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub log_probs: Option<u8>,
    #[serde(skip_serializing_if = "std::ops::Not::not")]
    pub tokens: bool,
}

impl<'a> BodyCompletion<'a> {
    pub fn new(model: &'a str, task: &'a TaskCompletion<'a>) -> Self {
        let TaskCompletion {
            prompt,
            stopping,
            sampling,
            special_tokens,
            logprobs,
        } = task;
        Self {
            model,
            prompt: prompt.borrow(),
            maximum_tokens: stopping.maximum_tokens,
            stop_sequences: stopping.stop_sequences,
            temperature: sampling.temperature,
            top_k: sampling.top_k,
            top_p: sampling.top_p,
            stream: false,
            raw_completion: *special_tokens,
            frequency_penalty: sampling.frequency_penalty,
            presence_penalty: sampling.presence_penalty,
            log_probs: logprobs.to_logprobs_num(),
            tokens: logprobs.to_tokens(),
        }
    }
    pub fn with_streaming(mut self) -> Self {
        self.stream = true;
        self
    }
}

#[derive(Deserialize, Debug, PartialEq)]
pub struct ResponseCompletion {
    model_version: String,
    completions: Vec<DeserializedCompletion>,
    num_tokens_prompt_total: u32,
    num_tokens_generated: u32,
}

#[derive(Deserialize, Debug, PartialEq)]
struct DeserializedCompletion {
    completion: String,
    finish_reason: String,
    raw_completion: Option<String>,
    #[serde(default)]
    log_probs: Vec<HashMap<String, f64>>,
    #[serde(default)]
    completion_tokens: Vec<String>,
}

/// Completion and metainformation returned by a completion task
#[derive(Deserialize, Debug, PartialEq)]
pub struct CompletionOutput {
    pub completion: String,
    pub finish_reason: String,
    pub logprobs: Vec<Distribution>,
    pub usage: Usage,
}

impl Task for TaskCompletion<'_> {
    type Output = CompletionOutput;

    type ResponseBody = ResponseCompletion;

    fn build_request(
        &self,
        client: &reqwest::Client,
        base: &str,
        model: &str,
    ) -> reqwest::RequestBuilder {
        let body = BodyCompletion::new(model, self);
        client.post(format!("{base}/complete")).json(&body)
    }

    fn body_to_output(&self, mut response: Self::ResponseBody) -> Self::Output {
        // We expect the API to return exactly one completion, despite them being modled as an array
        let DeserializedCompletion {
            completion,
            finish_reason,
            raw_completion,
            log_probs,
            completion_tokens,
        } = response.completions.pop().unwrap();
        let completion = if self.special_tokens {
            raw_completion.unwrap()
        } else {
            completion
        };
        CompletionOutput {
            completion,
            finish_reason,
            logprobs: completion_logprobs_to_canonical(
                log_probs,
                completion_tokens,
                self.logprobs.top_logprobs().unwrap_or_default(),
            ),
            usage: Usage {
                prompt_tokens: response.num_tokens_prompt_total,
                completion_tokens: response.num_tokens_generated,
            },
        }
    }
}

fn completion_logprobs_to_canonical(
    log_probs: Vec<HashMap<String, f64>>,
    completion_tokens: Vec<String>,
    num_expected_top_logprobs: u8,
) -> Vec<Distribution> {
    let mut logprobs = Vec::new();
    for (token, map) in completion_tokens.into_iter().zip(log_probs) {
        let logprob = *map.get(&token).unwrap_or(&f64::NAN);
        let mut top_logprobs = map
            .into_iter()
            .map(|(token, logprob)| Logprob {
                token: token.into_bytes(),
                logprob,
            })
            .collect::<Vec<_>>();
        // We want to make sure the most likely tokens are first in the array
        top_logprobs.sort_by(|a, b| b.logprob.total_cmp(&a.logprob));
        // The aa api always makes the sampled token part of the array, even if not in the top n
        // elements. Since we translate into a representation with the sampled token separate, we
        // can keep the top n elements constant. In case the sampled token has not been in the top
        // n, the below line will shorten the array by one.
        top_logprobs.resize_with(num_expected_top_logprobs as usize, || {
            unreachable!("Vec should only shorten")
        });
        logprobs.push(Distribution {
            sampled: Logprob {
                token: token.into_bytes(),
                logprob,
            },
            top: top_logprobs,
        });
    }
    logprobs
}

/// Describes a chunk of a completion stream
#[derive(Deserialize, Debug)]
pub struct StreamChunk {
    /// The index of the stream that this chunk belongs to.
    /// This is relevant if multiple completion streams are requested (see parameter n).
    pub index: u32,
    /// The completion of the stream.
    pub completion: String,
}

/// Denotes the end of a completion stream.
///
/// The index of the stream that is being terminated is not deserialized.
/// It is only relevant if multiple completion streams are requested, (see parameter n),
/// which is not supported by this crate yet.
#[derive(Deserialize)]
pub struct StreamSummary {
    /// Model name and version (if any) of the used model for inference.
    pub model_version: String,
    /// The reason why the model stopped generating new tokens.
    pub finish_reason: String,
}

/// Denotes the end of all completion streams.
#[derive(Deserialize)]
pub struct CompletionSummary {
    /// Number of tokens combined across all completion tasks.
    /// In particular, if you set best_of or n to a number larger than 1 then we report the
    /// combined prompt token count for all best_of or n tasks.
    pub num_tokens_prompt_total: u32,
    /// Number of tokens combined across all completion tasks.
    /// If multiple completions are returned or best_of is set to a value greater than 1 then
    /// this value contains the combined generated token count.
    pub num_tokens_generated: u32,
}

#[derive(Deserialize)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
pub enum CompletionEvent {
    StreamChunk(StreamChunk),
    StreamSummary(StreamSummary),
    CompletionSummary(CompletionSummary),
}

impl StreamTask for TaskCompletion<'_> {
    type Output = CompletionEvent;

    type ResponseBody = CompletionEvent;

    fn build_request(
        &self,
        client: &reqwest::Client,
        base: &str,
        model: &str,
    ) -> reqwest::RequestBuilder {
        let body = BodyCompletion::new(model, self).with_streaming();
        client.post(format!("{base}/complete")).json(&body)
    }

    fn body_to_output(response: Self::ResponseBody) -> Self::Output {
        response
    }
}

impl Logprobs {
    /// Convert into a number for completion endpoint
    fn to_logprobs_num(self) -> Option<u8> {
        match self {
            Logprobs::No => None,
            Logprobs::Sampled => Some(0),
            Logprobs::Top(n) => Some(n),
        }
    }

    /// Wether or not we want to return the completion tokens
    fn to_tokens(self) -> bool {
        match self {
            Logprobs::No => false,
            Logprobs::Sampled | Logprobs::Top(_) => true,
        }
    }
}