aleph_alpha_client/chat.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
use core::str;
use std::{borrow::Cow, str::Utf8Error};
use serde::{Deserialize, Serialize};
use crate::{Stopping, StreamTask, Task};
#[derive(Debug, Serialize, Deserialize, PartialEq, Eq)]
pub struct Message<'a> {
pub role: Cow<'a, str>,
pub content: Cow<'a, str>,
}
impl<'a> Message<'a> {
pub fn new(role: impl Into<Cow<'a, str>>, content: impl Into<Cow<'a, str>>) -> Self {
Self {
role: role.into(),
content: content.into(),
}
}
pub fn user(content: impl Into<Cow<'a, str>>) -> Self {
Self::new("user", content)
}
pub fn assistant(content: impl Into<Cow<'a, str>>) -> Self {
Self::new("assistant", content)
}
pub fn system(content: impl Into<Cow<'a, str>>) -> Self {
Self::new("system", content)
}
}
pub struct TaskChat<'a> {
/// The list of messages comprising the conversation so far.
pub messages: Vec<Message<'a>>,
/// Controls in which circumstances the model will stop generating new tokens.
pub stopping: Stopping<'a>,
/// Sampling controls how the tokens ("words") are selected for the completion.
pub sampling: ChatSampling,
/// Use this to control the logarithmic probabilities you want to have returned. This is useful
/// to figure out how likely it had been that this specific token had been sampled.
pub logprobs: Logprobs,
}
impl<'a> TaskChat<'a> {
/// Creates a new TaskChat containing one message with the given role and content.
/// All optional TaskChat attributes are left unset.
pub fn with_message(message: Message<'a>) -> Self {
Self::with_messages(vec![message])
}
/// Creates a new TaskChat containing the given messages.
/// All optional TaskChat attributes are left unset.
pub fn with_messages(messages: Vec<Message<'a>>) -> Self {
TaskChat {
messages,
sampling: ChatSampling::default(),
stopping: Stopping::default(),
logprobs: Logprobs::No,
}
}
/// Pushes a new Message to this TaskChat.
pub fn push_message(mut self, message: Message<'a>) -> Self {
self.messages.push(message);
self
}
/// Sets the maximum token attribute of this TaskChat.
pub fn with_maximum_tokens(mut self, maximum_tokens: u32) -> Self {
self.stopping.maximum_tokens = Some(maximum_tokens);
self
}
}
#[derive(Clone, Copy)]
pub enum Logprobs {
/// Do not return any logprobs
No,
/// Return only the logprob of the tokens which have actually been sampled into the completion.
Sampled,
/// Request between 0 and 20 tokens
Top(u8),
}
impl Logprobs {
/// Representation for serialization in request body, for `logprobs` parameter
fn logprobs(self) -> bool {
match self {
Logprobs::No => false,
Logprobs::Sampled | Logprobs::Top(_) => true,
}
}
/// Representation for serialization in request body, for `top_logprobs` parameter
fn top_logprobs(self) -> Option<u8> {
match self {
Logprobs::No | Logprobs::Sampled => None,
Logprobs::Top(n) => Some(n),
}
}
}
/// Sampling controls how the tokens ("words") are selected for the completion. This is different
/// from [`crate::Sampling`], because it does **not** supprot the `top_k` parameter.
pub struct ChatSampling {
/// A temperature encourages the model to produce less probable outputs ("be more creative").
/// Values are expected to be between 0 and 1. Try high values for a more random ("creative")
/// response.
pub temperature: Option<f64>,
/// Introduces random sampling for generated tokens by randomly selecting the next token from
/// the k most likely options. A value larger than 1 encourages the model to be more creative.
/// Set to 0 to get the same behaviour as `None`.
pub top_p: Option<f64>,
/// When specified, this number will decrease (or increase) the likelihood of repeating tokens
/// that were mentioned prior in the completion. The penalty is cumulative. The more a token
/// is mentioned in the completion, the more its probability will decrease.
/// A negative value will increase the likelihood of repeating tokens.
pub frequency_penalty: Option<f64>,
/// The presence penalty reduces the likelihood of generating tokens that are already present
/// in the generated text (repetition_penalties_include_completion=true) respectively the
/// prompt (repetition_penalties_include_prompt=true). Presence penalty is independent of the
/// number of occurrences. Increase the value to reduce the likelihood of repeating text.
/// An operation like the following is applied:
///
/// logits[t] -> logits[t] - 1 * penalty
///
/// where logits[t] is the logits for any given token. Note that the formula is independent
/// of the number of times that a token appears.
pub presence_penalty: Option<f64>,
}
impl ChatSampling {
/// Always chooses the token most likely to come next. Choose this if you do want close to
/// deterministic behaviour and do not want to apply any penalties to avoid repetitions.
pub const MOST_LIKELY: Self = ChatSampling {
temperature: None,
top_p: None,
frequency_penalty: None,
presence_penalty: None,
};
}
impl Default for ChatSampling {
fn default() -> Self {
Self::MOST_LIKELY
}
}
#[derive(Debug, PartialEq)]
pub struct ChatOutput {
pub message: Message<'static>,
pub finish_reason: String,
/// Contains the logprobs for the sampled and top n tokens, given that [`crate::Logprobs`] has
/// been set to [`crate::Logprobs::Sampled`] or [`crate::Logprobs::Top`].
pub logprobs: Vec<Logprob>,
}
#[derive(Deserialize, Debug, PartialEq)]
pub struct ResponseChoice {
pub message: Message<'static>,
pub finish_reason: String,
pub logprobs: Option<LogprobContent>,
}
#[derive(Deserialize, Debug, PartialEq, Default)]
pub struct LogprobContent {
content: Vec<Logprob>,
}
impl ResponseChoice {
fn into_chat_output(self) -> ChatOutput {
let ResponseChoice {
message,
finish_reason,
logprobs,
} = self;
ChatOutput {
message,
finish_reason,
logprobs: logprobs.unwrap_or_default().content,
}
}
}
/// Logprob information for a single token
#[derive(Deserialize, Debug, PartialEq)]
pub struct Logprob {
// The API returns both a UTF-8 String token and bytes as an array of numbers. We only
// deserialize bytes as it is the better source of truth.
/// Binary represtantation of the token, usually these bytes are UTF-8.
#[serde(rename = "bytes")]
pub token: Vec<u8>,
pub logprob: f64,
pub top_logprobs: Vec<TopLogprob>,
}
impl Logprob {
pub fn token_as_str(&self) -> Result<&str, Utf8Error> {
str::from_utf8(&self.token)
}
}
#[derive(Deserialize, Debug, PartialEq)]
pub struct TopLogprob {
// The API returns both a UTF-8 String token and bytes as an array of numbers. We only
// deserialize bytes as it is the better source of truth.
/// Binary represtantation of the token, usually these bytes are UTF-8.
#[serde(rename = "bytes")]
pub token: Vec<u8>,
pub logprob: f64,
}
impl TopLogprob {
pub fn token_as_str(&self) -> Result<&str, Utf8Error> {
str::from_utf8(&self.token)
}
}
#[derive(Deserialize, Debug, PartialEq)]
pub struct ResponseChat {
choices: Vec<ResponseChoice>,
}
#[derive(Serialize)]
struct ChatBody<'a> {
/// Name of the model tasked with completing the prompt. E.g. `luminous-base"`.
pub model: &'a str,
/// The list of messages comprising the conversation so far.
messages: &'a [Message<'a>],
/// Limits the number of tokens, which are generated for the completion.
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u32>,
#[serde(skip_serializing_if = "<[_]>::is_empty")]
pub stop: &'a [&'a str],
/// Controls the randomness of the model. Lower values will make the model more deterministic and higher values will make it more random.
/// Mathematically, the temperature is used to divide the logits before sampling. A temperature of 0 will always return the most likely token.
/// When no value is provided, the default value of 1 will be used.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f64>,
/// "nucleus" parameter to dynamically adjust the number of choices for each predicted token based on the cumulative probabilities. It specifies a probability threshold, below which all less likely tokens are filtered out.
/// When no value is provided, the default value of 1 will be used.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f64>,
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f64>,
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f64>,
/// Whether to stream the response or not.
#[serde(skip_serializing_if = "std::ops::Not::not")]
pub stream: bool,
#[serde(skip_serializing_if = "std::ops::Not::not")]
pub logprobs: bool,
#[serde(skip_serializing_if = "Option::is_none")]
pub top_logprobs: Option<u8>,
}
impl<'a> ChatBody<'a> {
pub fn new(model: &'a str, task: &'a TaskChat) -> Self {
let TaskChat {
messages,
stopping:
Stopping {
maximum_tokens,
stop_sequences,
},
sampling:
ChatSampling {
temperature,
top_p,
frequency_penalty,
presence_penalty,
},
logprobs,
} = task;
Self {
model,
messages,
max_tokens: *maximum_tokens,
stop: stop_sequences,
temperature: *temperature,
top_p: *top_p,
frequency_penalty: *frequency_penalty,
presence_penalty: *presence_penalty,
stream: false,
logprobs: logprobs.logprobs(),
top_logprobs: logprobs.top_logprobs(),
}
}
pub fn with_streaming(mut self) -> Self {
self.stream = true;
self
}
}
impl Task for TaskChat<'_> {
type Output = ChatOutput;
type ResponseBody = ResponseChat;
fn build_request(
&self,
client: &reqwest::Client,
base: &str,
model: &str,
) -> reqwest::RequestBuilder {
let body = ChatBody::new(model, self);
client.post(format!("{base}/chat/completions")).json(&body)
}
fn body_to_output(&self, mut response: Self::ResponseBody) -> Self::Output {
response.choices.pop().unwrap().into_chat_output()
}
}
#[derive(Deserialize)]
pub struct StreamMessage {
/// The role of the current chat completion. Will be assistant for the first chunk of every
/// completion stream and missing for the remaining chunks.
pub role: Option<String>,
/// The content of the current chat completion. Will be empty for the first chunk of every
/// completion stream and non-empty for the remaining chunks.
pub content: String,
}
/// One chunk of a chat completion stream.
#[derive(Deserialize)]
pub struct ChatStreamChunk {
/// The reason the model stopped generating tokens.
/// The value is only set in the last chunk of a completion and null otherwise.
pub finish_reason: Option<String>,
/// Chat completion chunk generated by the model when streaming is enabled.
pub delta: StreamMessage,
}
/// Event received from a chat completion stream. As the crate does not support multiple
/// chat completions, there will always exactly one choice item.
#[derive(Deserialize)]
pub struct ChatEvent {
pub choices: Vec<ChatStreamChunk>,
}
impl StreamTask for TaskChat<'_> {
type Output = ChatStreamChunk;
type ResponseBody = ChatEvent;
fn build_request(
&self,
client: &reqwest::Client,
base: &str,
model: &str,
) -> reqwest::RequestBuilder {
let body = ChatBody::new(model, self).with_streaming();
client.post(format!("{base}/chat/completions")).json(&body)
}
fn body_to_output(mut response: Self::ResponseBody) -> Self::Output {
// We always expect there to be exactly one choice, as the `n` parameter is not
// supported by this crate.
response
.choices
.pop()
.expect("There must always be at least one choice")
}
}