aleph_alpha_client/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
//! Usage sample
//!
//! ```no_run
//! use aleph_alpha_client::{Client, TaskCompletion, How};
//!
//! #[tokio::main(flavor = "current_thread")]
//! async fn main() {
//! // Authenticate against API. Fetches token.
//! let client = Client::with_authentication("AA_API_TOKEN").unwrap();
//!
//! // Name of the model we we want to use. Large models give usually better answer, but are also
//! // more costly.
//! let model = "luminous-base";
//!
//! // The task we want to perform. Here we want to continue the sentence: "An apple a day ..."
//! let task = TaskCompletion::from_text("An apple a day");
//!
//! // Retrieve the answer from the API
//! let response = client.completion(&task, model, &How::default()).await.unwrap();
//!
//! // Print entire sentence with completion
//! println!("An apple a day{}", response.completion);
//! }
//! ```
mod chat;
mod completion;
mod detokenization;
mod explanation;
mod http;
mod image_preprocessing;
mod prompt;
mod semantic_embedding;
mod stream;
mod tokenization;
use std::{pin::Pin, time::Duration};
use futures_util::Stream;
use http::HttpClient;
use semantic_embedding::{BatchSemanticEmbeddingOutput, SemanticEmbeddingOutput};
use tokenizers::Tokenizer;
pub use self::{
chat::{ChatEvent, ChatStreamChunk},
chat::{ChatOutput, Message, TaskChat},
completion::{CompletionEvent, CompletionSummary, StreamChunk, StreamSummary},
completion::{CompletionOutput, Sampling, Stopping, TaskCompletion},
detokenization::{DetokenizationOutput, TaskDetokenization},
explanation::{
Explanation, ExplanationOutput, Granularity, ImageScore, ItemExplanation,
PromptGranularity, TaskExplanation, TextScore,
},
http::{Error, Job, Task},
prompt::{Modality, Prompt},
semantic_embedding::{
SemanticRepresentation, TaskBatchSemanticEmbedding, TaskSemanticEmbedding,
},
stream::{StreamJob, StreamTask},
tokenization::{TaskTokenization, TokenizationOutput},
};
/// Execute Jobs against the Aleph Alpha API
pub struct Client {
/// This client does all the work of sending the requests and talking to the AA API. The only
/// additional knowledge added by this layer is that it knows about the individual jobs which
/// can be executed, which allows for an alternative non generic interface which might produce
/// easier to read code for the end user in many use cases.
http_client: HttpClient,
}
impl Client {
/// A new instance of an Aleph Alpha client helping you interact with the Aleph Alpha API.
/// For "normal" client applications you may likely rather use [`Self::with_authentication`] or
/// [`Self::with_base_url`].
///
/// You may want to only use request based authentication and skip default authentication. This
/// is useful if writing an application which invokes the client on behalf of many different
/// users. Having neither request, nor default authentication is considered a bug and will cause
/// a panic.
pub fn new(host: String, api_token: Option<String>) -> Result<Self, Error> {
let http_client = HttpClient::with_base_url(host, api_token)?;
Ok(Self { http_client })
}
/// Use the Aleph Alpha SaaS offering with your API token for all requests.
pub fn with_authentication(api_token: impl Into<String>) -> Result<Self, Error> {
Self::with_base_url("https://api.aleph-alpha.com".to_owned(), api_token)
}
/// Use your on-premise inference with your API token for all requests.
///
/// In production you typically would want set this to <https://api.aleph-alpha.com>. Yet
/// you may want to use a different instances for testing.
pub fn with_base_url(host: String, api_token: impl Into<String>) -> Result<Self, Error> {
Self::new(host, Some(api_token.into()))
}
/// Execute a task with the aleph alpha API and fetch its result.
///
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskCompletion, Error};
///
/// async fn print_completion() -> Result<(), Error> {
/// // Authenticate against API. Fetches token.
/// let client = Client::with_authentication("AA_API_TOKEN")?;
///
/// // Name of the model we we want to use. Large models give usually better answer, but are
/// // also slower and more costly.
/// let model = "luminous-base";
///
/// // The task we want to perform. Here we want to continue the sentence: "An apple a day
/// // ..."
/// let task = TaskCompletion::from_text("An apple a day");
///
/// // Retrieve answer from API
/// let response = client.execute(model, &task, &How::default()).await?;
///
/// // Print entire sentence with completion
/// println!("An apple a day{}", response.completion);
/// Ok(())
/// }
/// ```
#[deprecated = "Please use output_of instead."]
pub async fn execute<T: Task>(
&self,
model: &str,
task: &T,
how: &How,
) -> Result<T::Output, Error> {
self.output_of(&task.with_model(model), how).await
}
/// Execute any task with the aleph alpha API and fetch its result. This is most usefull in
/// generic code then you want to execute arbitrary task types. Otherwise prefer methods taking
/// concrete tasks like [`Self::completion`] for improved readability.
pub async fn output_of<T: Job>(&self, task: &T, how: &How) -> Result<T::Output, Error> {
self.http_client.output_of(task, how).await
}
/// An embedding trying to capture the semantic meaning of a text. Cosine similarity can be used
/// find out how well two texts (or multimodal prompts) match. Useful for search usecases.
///
/// See the example for [`cosine_similarity`].
pub async fn semantic_embedding(
&self,
task: &TaskSemanticEmbedding<'_>,
how: &How,
) -> Result<SemanticEmbeddingOutput, Error> {
self.http_client.output_of(task, how).await
}
/// An batch of embeddings trying to capture the semantic meaning of a text.
pub async fn batch_semantic_embedding(
&self,
task: &TaskBatchSemanticEmbedding<'_>,
how: &How,
) -> Result<BatchSemanticEmbeddingOutput, Error> {
self.http_client.output_of(task, how).await
}
/// Instruct a model served by the aleph alpha API to continue writing a piece of text (or
/// multimodal document).
///
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskCompletion, Task, Error};
///
/// async fn print_completion() -> Result<(), Error> {
/// // Authenticate against API. Fetches token.
/// let client = Client::with_authentication("AA_API_TOKEN")?;
///
/// // Name of the model we we want to use. Large models give usually better answer, but are
/// // also slower and more costly.
/// let model = "luminous-base";
///
/// // The task we want to perform. Here we want to continue the sentence: "An apple a day
/// // ..."
/// let task = TaskCompletion::from_text("An apple a day");
///
/// // Retrieve answer from API
/// let response = client.completion(&task, model, &How::default()).await?;
///
/// // Print entire sentence with completion
/// println!("An apple a day{}", response.completion);
/// Ok(())
/// }
/// ```
pub async fn completion(
&self,
task: &TaskCompletion<'_>,
model: &str,
how: &How,
) -> Result<CompletionOutput, Error> {
self.http_client
.output_of(&Task::with_model(task, model), how)
.await
}
/// Instruct a model served by the aleph alpha API to continue writing a piece of text.
/// Stream the response as a series of events.
///
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskCompletion, Error, CompletionEvent};
/// use futures_util::StreamExt;
///
/// async fn print_stream_completion() -> Result<(), Error> {
/// // Authenticate against API. Fetches token.
/// let client = Client::with_authentication("AA_API_TOKEN")?;
///
/// // Name of the model we we want to use. Large models give usually better answer, but are
/// // also slower and more costly.
/// let model = "luminous-base";
///
/// // The task we want to perform. Here we want to continue the sentence: "An apple a day
/// // ..."
/// let task = TaskCompletion::from_text("An apple a day");
///
/// // Retrieve stream from API
/// let mut stream = client.stream_completion(&task, model, &How::default()).await?;
/// while let Some(Ok(event)) = stream.next().await {
/// if let CompletionEvent::StreamChunk(chunk) = event {
/// println!("{}", chunk.completion);
/// }
/// }
/// Ok(())
/// }
/// ```
pub async fn stream_completion(
&self,
task: &TaskCompletion<'_>,
model: &str,
how: &How,
) -> Result<Pin<Box<dyn Stream<Item = Result<CompletionEvent, Error>> + Send>>, Error> {
self.http_client
.stream_output_of(&Task::with_model(task, model), how)
.await
}
/// Send a chat message to a model.
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskChat, Error, Message};
///
/// async fn print_chat() -> Result<(), Error> {
/// // Authenticate against API. Fetches token.
/// let client = Client::with_authentication("AA_API_TOKEN")?;
///
/// // Name of a model that supports chat.
/// let model = "pharia-1-llm-7b-control";
///
/// // Create a chat task with a user message.
/// let message = Message::user("Hello, how are you?");
/// let task = TaskChat::with_message(message);
///
/// // Send the message to the model.
/// let response = client.chat(&task, model, &How::default()).await?;
///
/// // Print the model response
/// println!("{}", response.message.content);
/// Ok(())
/// }
/// ```
pub async fn chat(
&self,
task: &TaskChat<'_>,
model: &str,
how: &How,
) -> Result<ChatOutput, Error> {
self.http_client
.output_of(&Task::with_model(task, model), how)
.await
}
/// Send a chat message to a model. Stream the response as a series of events.
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskChat, Error, Message};
/// use futures_util::StreamExt;
///
/// async fn print_stream_chat() -> Result<(), Error> {
/// // Authenticate against API. Fetches token.
/// let client = Client::with_authentication("AA_API_TOKEN")?;
///
/// // Name of a model that supports chat.
/// let model = "pharia-1-llm-7b-control";
///
/// // Create a chat task with a user message.
/// let message = Message::user("Hello, how are you?");
/// let task = TaskChat::with_message(message);
///
/// // Send the message to the model.
/// let mut stream = client.stream_chat(&task, model, &How::default()).await?;
/// while let Some(Ok(event)) = stream.next().await {
/// println!("{}", event.delta.content);
/// }
/// Ok(())
/// }
/// ```
pub async fn stream_chat(
&self,
task: &TaskChat<'_>,
model: &str,
how: &How,
) -> Result<Pin<Box<dyn Stream<Item = Result<ChatStreamChunk, Error>> + Send>>, Error> {
self.http_client
.stream_output_of(&StreamTask::with_model(task, model), how)
.await
}
/// Returns an explanation given a prompt and a target (typically generated
/// by a previous completion request). The explanation describes how individual parts
/// of the prompt influenced the target.
///
/// ```no_run
/// use aleph_alpha_client::{Client, How, TaskCompletion, Task, Error, Granularity, TaskExplanation, Stopping, Prompt, Sampling};
///
/// async fn print_explanation() -> Result<(), Error> {
/// let client = Client::with_authentication("AA_API_TOKEN")?;
///
/// // Name of the model we we want to use. Large models give usually better answer, but are
/// // also slower and more costly.
/// let model = "luminous-base";
///
/// // input for the completion
/// let prompt = Prompt::from_text("An apple a day");
///
/// let task = TaskCompletion {
/// prompt: prompt.clone(),
/// stopping: Stopping::from_maximum_tokens(10),
/// sampling: Sampling::MOST_LIKELY,
/// };
/// let response = client.completion(&task, model, &How::default()).await?;
///
/// let task = TaskExplanation {
/// prompt: prompt, // same input as for completion
/// target: &response.completion, // output of completion
/// granularity: Granularity::default(),
/// };
/// let response = client.explanation(&task, model, &How::default()).await?;
///
/// dbg!(&response);
/// Ok(())
/// }
/// ```
pub async fn explanation(
&self,
task: &TaskExplanation<'_>,
model: &str,
how: &How,
) -> Result<ExplanationOutput, Error> {
self.http_client
.output_of(&task.with_model(model), how)
.await
}
/// Tokenize a prompt for a specific model.
///
/// ```no_run
/// use aleph_alpha_client::{Client, Error, How, TaskTokenization};
///
/// async fn tokenize() -> Result<(), Error> {
/// let client = Client::with_authentication("AA_API_TOKEN")?;
///
/// // Name of the model for which we want to tokenize text.
/// let model = "luminous-base";
///
/// // Text prompt to be tokenized.
/// let prompt = "An apple a day";
///
/// let task = TaskTokenization {
/// prompt,
/// tokens: true, // return text-tokens
/// token_ids: true, // return numeric token-ids
/// };
/// let responses = client.tokenize(&task, model, &How::default()).await?;
///
/// dbg!(&responses);
/// Ok(())
/// }
/// ```
pub async fn tokenize(
&self,
task: &TaskTokenization<'_>,
model: &str,
how: &How,
) -> Result<TokenizationOutput, Error> {
self.http_client
.output_of(&task.with_model(model), how)
.await
}
/// Detokenize a list of token ids into a string.
///
/// ```no_run
/// use aleph_alpha_client::{Client, Error, How, TaskDetokenization};
///
/// async fn detokenize() -> Result<(), Error> {
/// let client = Client::with_authentication("AA_API_TOKEN")?;
///
/// // Specify the name of the model whose tokenizer was used to generate the input token ids.
/// let model = "luminous-base";
///
/// // Token ids to convert into text.
/// let token_ids: Vec<u32> = vec![556, 48741, 247, 2983];
///
/// let task = TaskDetokenization {
/// token_ids: &token_ids,
/// };
/// let responses = client.detokenize(&task, model, &How::default()).await?;
///
/// dbg!(&responses);
/// Ok(())
/// }
/// ```
pub async fn detokenize(
&self,
task: &TaskDetokenization<'_>,
model: &str,
how: &How,
) -> Result<DetokenizationOutput, Error> {
self.http_client
.output_of(&task.with_model(model), how)
.await
}
pub async fn tokenizer_by_model(
&self,
model: &str,
api_token: Option<String>,
) -> Result<Tokenizer, Error> {
self.http_client.tokenizer_by_model(model, api_token).await
}
}
/// Controls of how to execute a task
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct How {
/// The be-nice flag is used to reduce load for the models you intend to use.
/// This is commonly used if you are conducting experiments
/// or trying things out that create a large load on the aleph-alpha-api
/// and you do not want to increase queue time for other users too much.
///
/// (!) This increases how often you get a `Busy` response.
pub be_nice: bool,
/// The maximum duration of a request before the client cancels the request. This is not passed on
/// to the server but only handled by the client locally, i.e. the client will not wait longer than
/// this duration for a response.
pub client_timeout: Duration,
/// API token used to authenticate the request, overwrites the default token provided on setup
/// Default token may not provide the tracking or permission that is wanted for the request
pub api_token: Option<String>,
}
impl Default for How {
fn default() -> Self {
// the aleph-alpha-api cancels request after 5 minute
let api_timeout = Duration::from_secs(300);
Self {
be_nice: Default::default(),
// on the client side a request can take longer in case of network errors
// therefore by default we wait slightly longer
client_timeout: api_timeout + Duration::from_secs(5),
api_token: None,
}
}
}
/// Intended to compare embeddings.
///
/// ```no_run
/// use aleph_alpha_client::{
/// Client, Prompt, TaskSemanticEmbedding, cosine_similarity, SemanticRepresentation, How
/// };
///
/// async fn semantic_search_with_luminous_base(client: &Client) {
/// // Given
/// let robot_fact = Prompt::from_text(
/// "A robot is a machine—especially one programmable by a computer—capable of carrying out a \
/// complex series of actions automatically.",
/// );
/// let pizza_fact = Prompt::from_text(
/// "Pizza (Italian: [ˈpittsa], Neapolitan: [ˈpittsə]) is a dish of Italian origin consisting \
/// of a usually round, flat base of leavened wheat-based dough topped with tomatoes, cheese, \
/// and often various other ingredients (such as various types of sausage, anchovies, \
/// mushrooms, onions, olives, vegetables, meat, ham, etc.), which is then baked at a high \
/// temperature, traditionally in a wood-fired oven.",
/// );
/// let query = Prompt::from_text("What is Pizza?");
/// let how = How::default();
///
/// // When
/// let robot_embedding_task = TaskSemanticEmbedding {
/// prompt: robot_fact,
/// representation: SemanticRepresentation::Document,
/// compress_to_size: Some(128),
/// };
/// let robot_embedding = client.semantic_embedding(
/// &robot_embedding_task,
/// &how,
/// ).await.unwrap().embedding;
///
/// let pizza_embedding_task = TaskSemanticEmbedding {
/// prompt: pizza_fact,
/// representation: SemanticRepresentation::Document,
/// compress_to_size: Some(128),
/// };
/// let pizza_embedding = client.semantic_embedding(
/// &pizza_embedding_task,
/// &how,
/// ).await.unwrap().embedding;
///
/// let query_embedding_task = TaskSemanticEmbedding {
/// prompt: query,
/// representation: SemanticRepresentation::Query,
/// compress_to_size: Some(128),
/// };
/// let query_embedding = client.semantic_embedding(
/// &query_embedding_task,
/// &how,
/// ).await.unwrap().embedding;
/// let similarity_pizza = cosine_similarity(&query_embedding, &pizza_embedding);
/// println!("similarity pizza: {similarity_pizza}");
/// let similarity_robot = cosine_similarity(&query_embedding, &robot_embedding);
/// println!("similarity robot: {similarity_robot}");
///
/// // Then
///
/// // The fact about pizza should be more relevant to the "What is Pizza?" question than a fact
/// // about robots.
/// assert!(similarity_pizza > similarity_robot);
/// }
/// ```
pub fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
let ab: f32 = a.iter().zip(b).map(|(a, b)| a * b).sum();
let aa: f32 = a.iter().map(|a| a * a).sum();
let bb: f32 = b.iter().map(|b| b * b).sum();
let prod_len = (aa * bb).sqrt();
ab / prod_len
}
#[cfg(test)]
mod tests {
use crate::Prompt;
#[test]
fn ability_to_generate_prompt_in_local_function() {
fn local_function() -> Prompt<'static> {
Prompt::from_text(String::from("My test prompt"))
}
assert_eq!(Prompt::from_text("My test prompt"), local_function())
}
}