Expand description
§ai_client
A Rust crate for interacting with AI language model APIs, supporting multiple providers
(Grok, Anthropic, OpenAI) through a unified ChatCompletionClient
trait.
§Features
- Unified interface for chat completions across different LLM providers
- Caching of responses using an LRU cache
- Exponential backoff for retrying failed requests
- Metrics tracking for requests, successes, errors, and cache hits
- Environment-based configuration
- Robust error handling
§Usage
use ai_client::clients::{ChatCompletionClient, GrokClient};
use ai_client::entities::Message;
use tokio;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let client = GrokClient::new()?;
let messages = vec![
Message {
role: "system".to_string(),
content: "You are a helpful assistant.".to_string(),
},
Message {
role: "user".to_string(),
content: "What is 101*3?".to_string(),
},
];
let response = client.send_chat_completion(messages, "low").await?;
println!("Response: {:?}", response.choices[0].message.content);
Ok(())
}
§Environment Variables
GROK_API_KEY
: API key for GrokGROK_API_ENDPOINT
: API endpoint (default: https://api.x.ai/v1/chat/completions)GROK_MODEL
: Model name (default: grok-3-mini-fast-latest)GROK_CACHE_SIZE
: Cache size for responses (default: 100)
Re-exports§
pub use clients::ChatCompletionClient;
pub use clients::GrokClient;
pub use clients::AnthropicClient;
pub use clients::OpenAIClient;
pub use entities::Message;
pub use entities::ChatCompletionResponse;
pub use entities::Usage;
pub use entities::Choice;
pub use entities::ResponseMessage;
pub use metrics::Metrics;
pub use error::LlmClientError;