1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//! # Iterable `DataLoader`
//!
//! Iterable `DataLoader` is a `DataLoader` that operate on an iterable dataset.
//! An iterable dataset is just a type that implement `IntoIterator`.

mod builder;
use builder::Builder;
use rand::{seq::SliceRandom, thread_rng};

use crate::collate::{Collate, DefaultCollate};

/// For iterable dataset, the `datalaoder` will yield until the underlying iterator is `None`.
/// As the iteration over the dataset can be done mutliple time, depending if the underlying dataset iterator consume the dataset or not.
#[derive(Debug)]
pub struct DataLoader<D, C> {
    /// The dataset we will iterate over.
    dataset: D,
    /// The number of sample a batch will contain.
    batch_size: usize,
    /// If `true`, the sampler will drop the last batch if
    /// its size were less than `batch_size`.
    drop_last: bool,
    /// Collate function.
    collate_fn: C,
    /// If `true` the sample in the batch will be shuffled
    shuffle: bool,
}

impl<D> DataLoader<D, DefaultCollate>
where
    D: IntoIterator,
    DefaultCollate: Collate<D::Item>,
{
    /// return a [`DataLoader`] builder.
    pub fn builder(dataset: D) -> Builder<D, DefaultCollate> {
        Builder::new(dataset)
    }
}

// we want to use dataloader in for loop
// A dataset is something we can turn into an iterator.
// We make a an iterator that consume this iterator and yield only batches of it.
impl<D, C> IntoIterator for DataLoader<D, C>
where
    D: IntoIterator,
    C: Collate<<D as IntoIterator>::Item>,
{
    // We yield batch of dataset element (which can be transformed by the collate function).
    type Item = C::Output;
    type IntoIter = IntoIter<D::IntoIter, C>;

    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            batch_size: self.batch_size,
            dataset_iter: self.dataset.into_iter(),
            drop_last: self.drop_last,
            collate_fn: self.collate_fn,
            shuffle: self.shuffle,
        }
    }
}

/// Iterator returned by `into_iter` function.
#[derive(Debug)]
pub struct IntoIter<D, C> {
    batch_size: usize,
    dataset_iter: D,
    drop_last: bool,
    collate_fn: C,
    shuffle: bool,
}

impl<D, C> Iterator for IntoIter<D, C>
where
    D: Iterator,
    C: Collate<D::Item>,
{
    type Item = C::Output;
    fn next(&mut self) -> Option<Self::Item> {
        let mut batch = self
            .dataset_iter
            .by_ref()
            .take(self.batch_size)
            .collect::<Vec<_>>();

        if batch.is_empty() {
            return None;
        }

        if batch.len() == self.batch_size || (batch.len() != self.batch_size && !self.drop_last) {
            if self.shuffle {
                batch.shuffle(&mut thread_rng());
            }
            return Some(self.collate_fn.collate(batch));
        }
        None
    }
}

/// Iterator returned by `iter` function.
#[derive(Debug)]
pub struct Iter<'dataset, D, C> {
    batch_size: usize,
    dataset_iter: D,
    drop_last: bool,
    collate_fn: &'dataset C,
    shuffle: bool,
}

impl<'dataset, D, C> IntoIterator for &'dataset DataLoader<D, C>
where
    D: 'dataset,
    &'dataset D: IntoIterator,
    C: Collate<<&'dataset D as IntoIterator>::Item>,
{
    type Item = C::Output;
    type IntoIter = Iter<'dataset, <&'dataset D as IntoIterator>::IntoIter, C>;

    fn into_iter(self) -> Self::IntoIter {
        Iter {
            batch_size: self.batch_size,
            dataset_iter: self.dataset.into_iter(),
            drop_last: self.drop_last,
            collate_fn: &self.collate_fn,
            shuffle: self.shuffle,
        }
    }
}

impl<'dataset, D, C> DataLoader<D, C>
where
    D: 'dataset,
    &'dataset D: IntoIterator,
    C: Collate<<&'dataset D as IntoIterator>::Item>,
{
    /// Iterate over the dataloader without consuming the underlying dataset.
    /// As it make no sens to collate reference into a tensor, by default element are copied.
    pub fn iter(&'dataset self) -> Iter<'_, <&'dataset D as IntoIterator>::IntoIter, C> {
        Iter {
            batch_size: self.batch_size,
            dataset_iter: self.dataset.into_iter(),
            drop_last: self.drop_last,
            collate_fn: &self.collate_fn,
            shuffle: self.shuffle,
        }
    }
}

impl<'dataset, D, C> Iterator for Iter<'dataset, D, C>
where
    D: Iterator,
    C: Collate<D::Item>,
{
    type Item = C::Output;
    fn next(&mut self) -> Option<Self::Item> {
        let mut batch = self
            .dataset_iter
            .by_ref()
            .take(self.batch_size)
            .collect::<Vec<_>>();

        if batch.is_empty() {
            return None;
        }

        if batch.len() == self.batch_size || (batch.len() != self.batch_size && !self.drop_last) {
            if self.shuffle {
                batch.shuffle(&mut thread_rng());
            }
            return Some(self.collate_fn.collate(batch));
        }
        None
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use crate::collate::NoOpCollate;
    use ndarray::array;

    #[test]
    fn multiple_iteration() {
        let dataset = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        let loader = DataLoader::builder(dataset).batch_size(2).build();

        for sample in loader.iter() {
            dbg!(sample);
        }

        for sample in &loader {
            dbg!(sample);
        }

        let mut into_iter = loader.into_iter();
        assert_eq!(into_iter.next(), Some(array![0, 1]));
        assert_eq!(into_iter.next(), Some(array![2, 3]));
        assert_eq!(into_iter.next(), Some(array![4, 5]));
        assert_eq!(into_iter.next(), Some(array![6, 7]));
        assert_eq!(into_iter.next(), Some(array![8, 9]));
        assert_eq!(into_iter.next(), Some(array![10]));
        assert_eq!(into_iter.next(), None);
    }

    #[test]
    fn drop_last() {
        let dataset = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        let loader = DataLoader::builder(dataset)
            .batch_size(2)
            .drop_last()
            .build();

        let mut into_iter = loader.into_iter();
        assert_eq!(into_iter.next(), Some(array![0, 1]));
        assert_eq!(into_iter.next(), Some(array![2, 3]));
        assert_eq!(into_iter.next(), Some(array![4, 5]));
        assert_eq!(into_iter.next(), Some(array![6, 7]));
        assert_eq!(into_iter.next(), Some(array![8, 9]));
        assert_eq!(into_iter.next(), None);
    }

    #[test]
    fn custom_collate() {
        let dataset = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        let loader = DataLoader::builder(dataset)
            .batch_size(2)
            .collate_fn(NoOpCollate)
            .build();

        let mut into_iter = loader.into_iter();
        assert_eq!(into_iter.next(), Some(vec![0, 1]));
        assert_eq!(into_iter.next(), Some(vec![2, 3]));
        assert_eq!(into_iter.next(), Some(vec![4, 5]));
        assert_eq!(into_iter.next(), Some(vec![6, 7]));
        assert_eq!(into_iter.next(), Some(vec![8, 9]));
        assert_eq!(into_iter.next(), Some(vec![10]));
        assert_eq!(into_iter.next(), None);
    }

    #[test]
    fn vec_of_token() {
        let dataset = vec![
            (0, vec![1, 23, 4, 0]),
            (1, vec![4, 0, 0, 0]),
            (1, vec![8, 23, 12, 3]),
            (0, vec![2, 45, 4, 0]),
        ];

        let loader = DataLoader::builder(dataset).batch_size(2).build();

        for el in &loader {
            dbg!(el);
        }

        let mut iter = loader.iter();

        assert_eq!(
            iter.next(),
            Some((
                array![0, 1],
                vec![array![1, 4], array![23, 0], array![4, 0], array![0, 0]]
            ))
        );
    }
}