1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
use super::{Sampler, SequentialSampler};
use crate::Len;

/// Wraps another sampler to yield a mini-batch of indices.
/// # Arguments
///
/// * `sampler` - Base sampler.
/// * `batch_size` - Size of mini-batch.
/// * `drop_last` - If `true`, the sampler will drop the last batch if its size would be less than `batch_size`.
///
///
/// # Examples:
/// ```
/// use ai_dataloader::sampler::SequentialSampler;
/// use ai_dataloader::sampler::BatchSampler;
///
/// let dataset = vec![0, 1, 2, 3];
/// let batch_sampler = BatchSampler {
///     sampler: SequentialSampler {
///     data_source_len: dataset.len(),
///     },
///     batch_size: 2,
///     drop_last: false,
/// };
/// let mut iter = batch_sampler.iter();
/// assert_eq!(iter.next(), Some(vec![0, 1]));
/// assert_eq!(iter.next(), Some(vec![2, 3]));
/// ```
#[derive(Debug, Clone, PartialEq, PartialOrd, Hash, Eq, Ord)]
pub struct BatchSampler<S = SequentialSampler> {
    /// Base sampler.
    pub sampler: S,
    /// Size of mini batch.
    pub batch_size: usize,
    /// If `true`, the sampler will drop the last batch if
    /// its size were less than `batch_size`.
    pub drop_last: bool,
}

impl<S: Sampler> Len for BatchSampler<S> {
    /// Returns the number of batch.
    ///
    /// If `drop_last` is set to false, even an incomplete batch will be counted.
    fn len(&self) -> usize {
        if self.drop_last {
            self.sampler.len() / self.batch_size
        } else {
            (self.sampler.len() + self.batch_size - 1) / self.batch_size
        }
    }
}
impl<S: Sampler> BatchSampler<S> {
    /// Return an iterator over the [`BatchSampler`].
    pub fn iter(&self) -> BatchIterator<S::IntoIter> {
        BatchIterator {
            sampler: self.sampler.into_iter(),
            batch_size: self.batch_size,
            drop_last: self.drop_last,
        }
    }
}

/// An iterator for the batch. Yield a sequence of index at each iteration.
#[derive(Debug)]
pub struct BatchIterator<I>
where
    I: Iterator<Item = usize>,
{
    /// The underlying sampler.
    sampler: I,
    /// The size of one batch.
    batch_size: usize,
    /// Weither to drop the laste elements or not.
    drop_last: bool,
}

impl<I> Iterator for BatchIterator<I>
where
    I: Iterator<Item = usize>,
{
    type Item = Vec<usize>;
    fn next(&mut self) -> Option<Self::Item> {
        let mut batch = Vec::with_capacity(self.batch_size);

        // We can't use a classic for loop here because it will
        // try to move the `&mut`.
        let mut current_idx = self.sampler.next();
        while let Some(idx) = current_idx {
            batch.push(idx);
            if batch.len() == self.batch_size {
                return Some(batch);
            }
            current_idx = self.sampler.next();
        }
        if !batch.is_empty() && !self.drop_last {
            return Some(batch);
        }
        None
    }
}
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn basics() {
        let dataset = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        let batch_sampler = BatchSampler {
            sampler: SequentialSampler {
                data_source_len: dataset.len(),
            },
            batch_size: 3,
            drop_last: false,
        };
        for (i, batch_indices) in batch_sampler.iter().enumerate() {
            println!("Batch #{i} indices: {batch_indices:?}");
        }
        let mut iter = batch_sampler.iter();
        assert_eq!(iter.next(), Some(vec![0, 1, 2]));
        assert_eq!(iter.next(), Some(vec![3, 4, 5]));
        assert_eq!(iter.next(), Some(vec![6, 7, 8]));
    }
    #[test]
    fn batch_sampler() {
        // TODO : test from pytorch, need to support custom batch sampler
        let mut batches = Vec::new();
        for i in (0..20).step_by(5) {
            batches.push([i..i + 2]);
            batches.push([i + 2..i + 5]);
        }
    }
    #[test]
    fn len() {
        let dataset = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        let batch_sampler = BatchSampler {
            sampler: SequentialSampler {
                data_source_len: dataset.len(),
            },
            batch_size: 2,
            drop_last: false,
        };
        assert_eq!(batch_sampler.len(), 5);

        let dataset = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
        let batch_sampler = BatchSampler {
            sampler: SequentialSampler {
                data_source_len: dataset.len(),
            },
            batch_size: 2,
            drop_last: false,
        };
        assert_eq!(batch_sampler.len(), 6);

        let dataset = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
        let batch_sampler = BatchSampler {
            sampler: SequentialSampler {
                data_source_len: dataset.len(),
            },
            batch_size: 2,
            drop_last: true,
        };
        assert_eq!(batch_sampler.len(), 5);
    }
}