1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//! Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset.

use std::marker::PhantomData;

use super::fetch::{Fetcher, MapDatasetFetcher};
use crate::{
    collate::{Collate, DefaultCollate},
    sampler::{BatchIterator, BatchSampler, Sampler, SequentialSampler},
    Dataset, Len,
};

mod builder;
use builder::Builder;
// The collate function could have been a `Fn(Vec<D::Sample>) -> T` or a `fn(Vec<D::Sample>) -> T`, it would have allowed
// to pass directly closure or function to construct a `Dataloader`.
// The main drawback is that you can't (as i'm aware of) pass a default value
// to a generic Fn (or to the return type of fn), which made the API less ergonomic. Indeed, in that case, you have to precise
// the collate function to construct the dataloader each time, and in most our use cases we just just want the default one.

/// Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset.
///
///
/// ```rust
/// use ai_dataloader::indexable::DataLoader;
///
/// let loader = DataLoader::builder(vec![(0, "hola"), (1, "hello"), (2, "hallo"), (3, "bonjour")]).batch_size(2).shuffle().build();
///
/// for (label, text) in &loader {
///     println!("Label {label:?}");
///     println!("Text {text:?}");
/// }
/// ```
///
#[derive(Debug, Clone, PartialEq, PartialOrd, Hash, Eq, Ord)]
pub struct DataLoader<D, S = SequentialSampler, C = DefaultCollate> {
    /// Dataset from which to load the data.
    dataset: D,
    /// Return a batch of indices at a time.
    batch_sampler: BatchSampler<S>,
    /// Just here because collate has no data members.
    collate_fn: PhantomData<C>,
}

impl<D> DataLoader<D, SequentialSampler, DefaultCollate>
where
    D: Dataset,
    DefaultCollate: Collate<D::Sample>,
{
    /// Helper to return a [`DataLoader`] builder.
    pub fn builder(dataset: D) -> Builder<D, SequentialSampler, DefaultCollate> {
        Builder::new(dataset)
    }
}

impl<D, S, C> DataLoader<D, S, C>
where
    D: Dataset,
    S: Sampler,
    C: Collate<D::Sample>,
{
    /// Return not owning iterator over the dataloader.
    pub fn iter(&self) -> SingleProcessDataLoaderIter<'_, D, S, C> {
        SingleProcessDataLoaderIter::new(self)
    }
}

impl<D, S, C> Len for DataLoader<D, S, C>
where
    D: Dataset,
    S: Sampler,
    C: Collate<D::Sample>,
{
    /// Return the number of batch that contain the dataloader.
    fn len(&self) -> usize {
        self.batch_sampler.len()
    }
}

/// Iterate over the dataloader with a single thread.
#[derive(Debug)]
pub struct SingleProcessDataLoaderIter<'dataset, D, S = SequentialSampler, C = DefaultCollate>
where
    D: Dataset,
    S: Sampler,
    C: Collate<D::Sample>,
{
    /// The batch iterator of this iterator.
    sampler_iter: BatchIterator<S::IntoIter>,
    /// Number of sample yielded.
    num_yielded: u64,
    /// Used to fetch the data from the dataset.
    data_fetcher: MapDatasetFetcher<'dataset, D, C>,
}

impl<'dataset, D, S, C> SingleProcessDataLoaderIter<'dataset, D, S, C>
where
    D: Dataset,
    S: Sampler,
    C: Collate<D::Sample>,
{
    fn new(loader: &DataLoader<D, S, C>) -> SingleProcessDataLoaderIter<'_, D, S, C> {
        SingleProcessDataLoaderIter {
            sampler_iter: loader.batch_sampler.iter(),
            num_yielded: 0,
            data_fetcher: MapDatasetFetcher {
                dataset: &loader.dataset,
                collate_fn: PhantomData,
            },
        }
    }
    fn next_index(&mut self) -> Option<Vec<usize>> {
        self.sampler_iter.next()
    }
    fn next_data(&mut self) -> Option<C::Output> {
        let index = self.next_index();
        if let Some(index) = index {
            let data = self.data_fetcher.fetch(index);
            return Some(data);
        }
        None
    }
}
impl<'dataset, D, S, C> Iterator for SingleProcessDataLoaderIter<'dataset, D, S, C>
where
    D: Dataset,
    S: Sampler,
    C: Collate<D::Sample>,
{
    type Item = C::Output;
    fn next(&mut self) -> Option<Self::Item> {
        let data = self.next_data();

        if let Some(data) = data {
            self.num_yielded += 1;
            return Some(data);
        }
        None
    }
}
impl<'dataset, D, S, C> IntoIterator for &'dataset DataLoader<D, S, C>
where
    D: Dataset,
    S: Sampler,
    C: Collate<D::Sample>,
{
    type Item = C::Output;
    type IntoIter = SingleProcessDataLoaderIter<'dataset, D, S, C>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::collate::NoOpCollate;
    use crate::sampler::RandomSampler;
    use crate::sampler::SequentialSampler;
    use crate::Len;
    use crate::NdarrayDataset;
    use ndarray::{arr0, array, Array, Array1, Array4, Axis, Ix1, Ix4, Slice};
    use ndarray_rand::rand_distr::{Normal, Uniform};
    use ndarray_rand::RandomExt;
    use std::collections::HashMap;

    #[test]
    fn len() {
        let dataset = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        let dataloader = DataLoader::builder(dataset)
            .batch_size(2)
            .drop_last()
            .build();
        assert_eq!(dataloader.len(), dataloader.batch_sampler.len());
        assert_eq!(dataloader.len(), 5);
    }

    #[test]
    fn one_dimension_basic() {
        let dataset = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
        let dataloader = DataLoader::builder(dataset).batch_size(2).build();

        let mut iter = dataloader.iter();
        assert_eq!(iter.next(), Some(array![1, 2]));
        assert_eq!(iter.next(), Some(array![3, 4]));
        assert_eq!(iter.next(), Some(array![5, 6]));
        assert_eq!(iter.next(), Some(array![7, 8]));
        assert_eq!(iter.next(), Some(array![9, 10]));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn two_iteration() {
        let dataset = vec![1, 2, 3, 4];
        let dataloader = DataLoader::builder(dataset).batch_size(2).build();

        let mut iter = dataloader.iter();
        assert_eq!(iter.next(), Some(array![1, 2]));
        assert_eq!(iter.next(), Some(array![3, 4]));
        assert_eq!(iter.next(), None);
        let mut iter = dataloader.iter();
        assert_eq!(iter.next(), Some(array![1, 2]));
        assert_eq!(iter.next(), Some(array![3, 4]));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn one_dimension_basic_string() {
        let dataset = vec![String::from("a"), String::from("b")];
        let dataloader = DataLoader::builder(dataset).build();

        let mut iter = dataloader.iter();
        assert_eq!(iter.next(), Some(vec![String::from("a")]));
        assert_eq!(iter.next(), Some(vec![String::from("b")]));
        assert_eq!(iter.next(), None);
    }
    #[test]
    fn collate() {
        let dataset = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

        let dataloader = DataLoader::builder(dataset)
            .batch_size(2)
            .collate_fn(NoOpCollate)
            .build();

        let mut iter = dataloader.iter();

        assert_eq!(iter.next(), Some(vec![1, 2]));
        assert_eq!(iter.next(), Some(vec![3, 4]));
        assert_eq!(iter.next(), Some(vec![5, 6]));
        assert_eq!(iter.next(), Some(vec![7, 8]));
        assert_eq!(iter.next(), Some(vec![9, 10]));
        assert_eq!(iter.next(), None);
    }
    struct TestDataLoader<S: Sampler> {
        loader: DataLoader<NdarrayDataset<f64, f64, Ix4, Ix1>, S>,
        data: Array4<f64>,
        labels: Array1<f64>,
        dataset: NdarrayDataset<f64, f64, Ix4, Ix1>,
    }
    enum TestDataLoaderData {
        Sequential(TestDataLoader<SequentialSampler>),
        Random(TestDataLoader<RandomSampler>),
    }
    fn get_loader_with_dummy_data(batch_size: usize, shuffle: bool) -> TestDataLoaderData {
        // We use a normal distribution for the random numbers
        let normal: Normal<f64> = Normal::new(0.0, 1.0).unwrap();
        // We create a 4-dimensional array populated with random value
        let data = Array::random((100, 2, 3, 5), normal);
        // We create a 1-dimensional array populated with random value
        let labels = Array::random(100, Uniform::<f64>::new(0., 50.));
        // Basic Test dataset
        let dataset = NdarrayDataset {
            ndarrays: (data.clone(), labels.clone()),
        };

        if shuffle {
            let loader = DataLoader::builder(dataset.clone())
                .batch_size(batch_size)
                .shuffle()
                .build();

            TestDataLoaderData::Random(TestDataLoader {
                loader,
                data,
                labels,
                dataset,
            })
        } else {
            let loader = DataLoader::builder(dataset.clone())
                .batch_size(batch_size)
                .build();

            TestDataLoaderData::Sequential(TestDataLoader {
                loader,
                data,
                labels,
                dataset,
            })
        }
    }

    #[test]
    fn sequential_non_batch() {
        let batch_size = 1;
        let test_dataloader_data = tests::get_loader_with_dummy_data(batch_size, false);
        let test_data;
        if let TestDataLoaderData::Sequential(test_dataloader_data) = test_dataloader_data {
            test_data = test_dataloader_data;
        } else {
            panic!("Expected a sequential loader")
        }
        let mut current_idx = 0;

        for (idx, (sample, target)) in test_data.loader.iter().enumerate() {
            assert_eq!(
                sample,
                test_data
                    .data
                    .slice_axis(Axis(0), Slice::from(idx..idx + batch_size))
            );
            assert_eq!(
                target,
                test_data
                    .labels
                    .slice_axis(Axis(0), Slice::from(idx..idx + batch_size))
            );
            current_idx = idx;
        }
        assert_eq!(current_idx, test_data.dataset.len() - 1);
    }

    #[test]
    fn sequential_batch() {
        let batch_size = 2;
        let test_dataloader_data = tests::get_loader_with_dummy_data(2, false);
        let test_data;
        if let TestDataLoaderData::Sequential(test_dataloader_data) = test_dataloader_data {
            test_data = test_dataloader_data;
        } else {
            panic!("Expected a sequential loader")
        }

        let mut current_i = 0;

        for (i, (sample, target)) in test_data.loader.iter().enumerate() {
            let idx = i * batch_size;
            assert_eq!(
                sample,
                test_data
                    .data
                    .slice_axis(Axis(0), Slice::from(idx..idx + batch_size))
            );
            assert_eq!(
                target,
                test_data
                    .labels
                    .slice_axis(Axis(0), Slice::from(idx..idx + batch_size))
            );
            current_i = i;
        }
        assert_eq!(current_i, (test_data.dataset.len() - 1) / batch_size);
    }

    #[test]
    fn shuffle_non_batch() {
        let test_dataloader_data = tests::get_loader_with_dummy_data(1, true);
        let test_data;
        if let TestDataLoaderData::Random(test_dataloader_data) = test_dataloader_data {
            test_data = test_dataloader_data;
        } else {
            panic!("Expected a random loader")
        }
        // 2 maps to keep track on what we have iterated.
        let mut found_data: HashMap<_, _> = (0..test_data.data.len())
            .zip(vec![0; test_data.data.len()])
            .collect();
        let mut found_labels: HashMap<_, _> = (0..test_data.labels.len())
            .zip(vec![0; test_data.labels.len()])
            .collect();
        let mut current_i = 0;
        for (i, (sample, target)) in test_data.loader.iter().enumerate() {
            current_i = i;
            let mut current_data_point_idx = 0;
            // We iterate over the original data, finding the data corresponding to the one the dataloader just yield us
            for (data_point_idx, data_point) in test_data.data.outer_iter().enumerate() {
                current_data_point_idx = data_point_idx;
                // We need to take the inner of the sample (It's not automatically done like in python)
                if data_point == sample.index_axis(Axis(0), 0) {
                    assert_eq!(found_data[&data_point_idx], 0);
                    *found_data.get_mut(&data_point_idx).unwrap() += 1;
                    break;
                }
            }

            assert_eq!(
                arr0(target[0]),
                test_data.labels.index_axis(Axis(0), current_data_point_idx)
            );
            *found_labels.get_mut(&current_data_point_idx).unwrap() += 1;
            assert_eq!(found_data.values().sum::<usize>(), i + 1);
            assert_eq!(found_labels.values().sum::<usize>(), i + 1);
        }
        assert_eq!(current_i, test_data.dataset.len() - 1)
    }

    #[test]
    fn shuffle_batch() {
        let batch_size = 2;
        let test_dataloader_data = tests::get_loader_with_dummy_data(batch_size, true);
        let test_data;
        if let TestDataLoaderData::Random(test_dataloader_data) = test_dataloader_data {
            test_data = test_dataloader_data;
        } else {
            panic!("Expected a random loader")
        }
        let mut found_data: HashMap<_, _> = (0..test_data.data.len())
            .zip(vec![0; test_data.data.len()])
            .collect();
        let mut found_labels: HashMap<_, _> = (0..test_data.labels.len())
            .zip(vec![0; test_data.labels.len()])
            .collect();
        let mut current_i = 0;
        for (i, (batch_samples, batch_targets)) in test_data.loader.iter().enumerate() {
            current_i = i;
            for (sample, target) in batch_samples.outer_iter().zip(batch_targets) {
                let mut current_data_point_idx = 0;
                for (data_point_idx, data_point) in test_data.data.outer_iter().enumerate() {
                    current_data_point_idx = data_point_idx;
                    if data_point == sample {
                        assert_eq!(found_data[&data_point_idx], 0);
                        *found_data.get_mut(&data_point_idx).unwrap() += 1;
                        break;
                    }
                }
                assert_eq!(
                    arr0(target),
                    test_data.labels.index_axis(Axis(0), current_data_point_idx)
                );
                *found_labels.get_mut(&current_data_point_idx).unwrap() += 1;
            }
            assert_eq!(found_data.values().sum::<usize>(), (i + 1) * batch_size);
            assert_eq!(found_labels.values().sum::<usize>(), (i + 1) * batch_size);
        }
        assert_eq!(current_i, (test_data.dataset.len() - 1) / batch_size)
    }
}