1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
use crate::Var;
use core::any::TypeId;
/// Type ID of a relation.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct RelationId(pub(crate) TypeId);
impl RelationId {
#[allow(missing_docs)]
pub fn of<R: Relation>() -> Self {
Self(TypeId::of::<R>())
}
}
impl<R: Relation> From<R> for Var<RelationId> {
fn from(_: R) -> Self {
let _ = R::ZST_OR_PANIC;
Self::Val(RelationId::of::<R>())
}
}
impl From<Hierarchy> for Var<RelationId> {
fn from(_: Hierarchy) -> Self {
Self::Val(RelationId(TypeId::of::<Hierarchy>()))
}
}
/// Hack to ensure relation types are indeed ZSTs
pub trait ZstOrPanic: Sized {
#[allow(missing_docs)]
const ZST_OR_PANIC: () = {
// TODO: Make diagnostic friendlier when `std::any::type_name` becomes const
// TODO: Use actual type level mechanism and remove hack when possible in stable
if std::mem::size_of::<Self>() != 0 {
panic!("Not a ZST")
}
};
}
impl<T> ZstOrPanic for T {}
#[cfg_attr(doc, aquamarine::aquamarine)]
/// Supported cleanup patterns. When entities have multiple relations with different cleanup
/// policies each relation looks at the graph as if it were the only relation that existed.
/// In effect the summation of their cleanup is applied.
/// ## Illustration
/// ```
/// use bevy::prelude::*;
/// use aery::prelude::*;
///
/// #[derive(Relation)]
/// struct O;
///
/// #[derive(Relation)]
/// #[aery(Recursive)]
/// struct R;
///
/// fn sys(world: &mut World) {
/// let [e0, e1, e2, e3, e4, e5, e6] = std::array::from_fn(|_| world.spawn_empty().id());
///
/// world.entity_mut(e1).set::<O>(e0).set::<R>(e0);
///
/// world.entity_mut(e2).set::<O>(e0);
/// world.entity_mut(e3).set::<O>(e1);
///
/// world.entity_mut(e4).set::<O>(e1).set::<R>(e1);
///
/// world.entity_mut(e5).set::<R>(e2);
/// world.entity_mut(e6).set::<R>(e2);
///
/// // Trigger cleanup
/// world.entity_mut(e0).checked_despawn();
///
/// for (entity, expected) in [
/// (e0, false),
/// (e1, false),
/// (e2, true),
/// (e3, true),
/// (e4, false),
/// (e5, true),
/// (e6, true)
/// ] {
/// assert_eq!(world.get_entity(entity).is_some(), expected)
/// }
/// }
///# use bevy::app::AppExit;
///#
///# fn exit_system(mut exit: EventWriter<AppExit>) {
///# exit.send(AppExit);
///# }
///#
///# fn main() {
///# App::new()
///# .add_systems(Startup, (sys, exit_system).chain())
///# .run();
///# }
/// ```
/// ## Before cleanup:
/// ```mermaid
/// flowchart BT
/// E1 --R--> E0
/// E1 --O--> E0
///
/// E2 --O--> E0
///
/// E3 --O--> E1
///
/// E4 --R--> E1
/// E4 --O--> E1
///
/// E5 --R--> E2
///
/// E6 --R--> E2
/// ```
///
/// ## After cleanup:
/// ```mermaid
/// flowchart BT
/// E3
///
/// E5 --R--> E2
///
/// E6 --R--> E2
/// ```
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum CleanupPolicy {
/// Will do no further cleanup.
Orphan,
/// Entities that are the target of counted relationships *count* the number of hosts they have.
/// If it ever reaches zero they will delete themselves. This is effectively reference counting.
Counted,
/// When entities that are the target of recursive relationships are despawned they also
/// *recursively* despawn their hosts. Unsetting **does not** trigger recursive cleanup.
Recursive,
/// Total performs both counted and recursive cleanup.
Total,
}
/// The relation trait. This is what controls the cleanup, exclusivity & symmetry of a relation.
/// Relations can be thought of as arrows. The terms Aery uses for the base and head of this arrow
/// are "host" and "target" respectively. With both the host and target being entities.
/// Exclusive relations that face bottom up in hierarchies have
/// many favorable properties so these are the default.
///
/// Note that relations:
/// - Must be a [ZST](https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts).
/// This simply means that there can be no data on the edge.
/// A compile error will be produced if you try to use a relation that isn't one.
/// - Cannot be self referential. Ie. an entity cannot target itself with a relationship it hosts.
/// If this is ever attempted a warning will be logged & the relationship will not be set.
///
/// Aery only supports relations that are non-fragmenting. Ie. an entities archetype is not affected
/// by the targets of its relations. See [this article](https://ajmmertens.medium.com/building-an-ecs-2-archetypes-and-vectorization-fe21690805f9)
/// for more information. This isn't necessarily good or bad. Archetype fragmentation is a more
/// advanced topic but to keep it short and simple the archetype fragmentation is comparable to
/// `bevy_hierarchy` if it supported multiple hierarchy types.
/// ## Derive examples
/// ```
/// use aery::prelude::*;
///
/// // Simple derive with defaults:
/// // - Orphaning
/// // - Exclusive
/// // - Asymmetric
/// #[derive(Relation)]
/// struct R;
///
/// // Override edge exclusivity
/// #[derive(Relation)]
/// #[aery(Poly)]
/// struct Poly;
///
/// // Override edge symmetry
/// #[derive(Relation)]
/// #[aery(Symmetric)]
/// struct Symmetric;
///
/// // Override cleanup policy
/// #[derive(Relation)]
/// #[aery(Recursive)] // Available: Counted, Recursive, Total
/// struct Recursive;
///
/// // Override multiple properties
/// #[derive(Relation)]
/// #[aery(Poly, Symmetric, Counted)]
/// struct Multi;
/// ```
pub trait Relation: 'static + Sized + Send + Sync {
/// How to clean up entities and relations when an entity with a relation is despawned
/// or when a relation is unset.
const CLEANUP_POLICY: CleanupPolicy = CleanupPolicy::Orphan;
/// Whether or not an entity is allowed to host more than 1 of this relation type.
/// Entities can still be targeted multiple times by different entities with this relation.
/// Entities cannot however host more than 1 of this relation at a time.
/// Setting an exclusive relation that is already set will unset the existing relation.
const EXCLUSIVE: bool = true;
/// Whether or not a relation is symmetric. Ie:
/// - When `e0 -R-> e1`
/// - Then `e0 <-R- e1`
///
/// For example it would make sense for a `MarriedTo` relation to be symmetric.
const SYMMETRIC: bool = false;
}
/// For compatibility with bevy_hierarchy.
/// **WARNING:**
/// - Hierarchy cleanup does not clean aery relations.
/// - Aery cleanup policies do not clean up hierarchy edges.
/// ## Query example
/// ```
/// use bevy::prelude::*;
/// use aery::prelude::*;
///
/// #[derive(Component)]
/// struct A {
/// // ..
/// }
///
/// #[derive(Component)]
/// struct B {
/// // ..
/// }
///
/// #[derive(Relation)]
/// struct R;
///
/// fn sys(
/// a_query: Query<&A>,
/// b_query: Query<(&B, Relations<(Hierarchy, R)>)>, // Can use alone or along side relations
/// roots: Query<Entity, (With<Children>, Without<Parent>)>
/// ) {
/// b_query.traverse::<Hierarchy>(roots.iter()).for_each(|b, edges| {
/// edges.join::<R>(&a_query).for_each(|a| {
/// // ..
/// });
/// })
/// }
/// ```
pub struct Hierarchy;