Expand description
Monte Carlo Integration
Uses random sampling to estimate integrals, especially useful for high-dimensional integrals that are difficult to compute analytically.
Supports parallel processing for improved performance.
§Examples
use advanced_algorithms::optimization::monte_carlo;
// Estimate integral of x^2 from 0 to 1
let f = |x: &[f64]| x[0] * x[0];
let bounds = vec![(0.0, 1.0)];
let result = monte_carlo::integrate(f, &bounds, 100000).unwrap();
// Should be close to 1/3 ≈ 0.333...
assert!((result.value - 0.333).abs() < 0.01);Structs§
- Integration
Result - Result of Monte Carlo integration
Functions§
- integrate
- Performs Monte Carlo integration
- integrate_
importance_ sampling - Monte Carlo integration with importance sampling