adk-gemini 0.3.0

Rust client for Google Gemini API
docs.rs failed to build adk-gemini-0.3.0
Please check the build logs for more information.
See Builds for ideas on how to fix a failed build, or Metadata for how to configure docs.rs builds.
If you believe this is docs.rs' fault, open an issue.
Visit the last successful build: adk-gemini-0.2.1

adk-gemini

Rust client library for Google's Gemini API — content generation, streaming, function calling, embeddings, image/speech generation, batch processing, caching, and Vertex AI.

Crates.io Documentation License: MIT

Overview

adk-gemini is a comprehensive Rust client for the Google Gemini API, maintained as part of the ADK-Rust project. It provides full coverage of the Gemini API surface:

  • Content generation (text, images, audio)
  • Real-time streaming responses
  • Function calling and tool integration (including Google Search and URL Context)
  • Thinking mode (Gemini 2.5 / Gemini 3)
  • Text embeddings
  • Image generation and editing
  • Text-to-speech (single and multi-speaker)
  • Batch processing
  • Content caching
  • File upload and management
  • Structured JSON output
  • Grounding with Google Search
  • Vertex AI (Google Cloud) support with ADC, service accounts, and WIF
  • Multimodal input (images, video, PDF, audio)

Installation

[dependencies]
adk-gemini = "0.3.0"

Or through adk-model:

[dependencies]
adk-model = { version = "0.3.0", features = ["gemini"] }

Quick Start

use adk_gemini::Gemini;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let client = Gemini::new(std::env::var("GEMINI_API_KEY")?)?;

    let response = client
        .generate_content()
        .with_user_message("Hello, Gemini!")
        .execute()
        .await?;

    println!("{}", response.text());
    Ok(())
}

Client Constructors

Constructor Description
Gemini::new(api_key) Default model (gemini-2.5-flash) via v1beta
Gemini::pro(api_key) Gemini 2.5 Pro
Gemini::with_model(api_key, model) Specific model
Gemini::with_v1(api_key) Stable v1 API
Gemini::with_model_v1(api_key, model) Specific model on v1
Gemini::with_base_url(api_key, url) Custom endpoint
Gemini::with_google_cloud(api_key, project, location) Vertex AI
Gemini::with_google_cloud_adc(project, location) Vertex AI with ADC
Gemini::with_service_account_json(json) Service account (auto-detects project)
Gemini::with_google_cloud_wif_json(json, project, location, model) Workload Identity Federation

Examples

Streaming

use adk_gemini::Gemini;
use futures_util::TryStreamExt;

let client = Gemini::new(api_key)?;

let mut stream = client
    .generate_content()
    .with_system_prompt("You are a helpful assistant.")
    .with_user_message("Write a short story about a robot.")
    .execute_stream()
    .await?;

while let Some(chunk) = stream.try_next().await? {
    print!("{}", chunk.text());
}

Function Calling

use adk_gemini::*;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};

#[derive(Debug, Serialize, Deserialize, JsonSchema)]
struct WeatherRequest {
    location: String,
    unit: Option<String>,
}

let get_weather = FunctionDeclaration::new(
    "get_weather",
    "Get the current weather for a location",
    None,
).with_parameters::<WeatherRequest>();

let response = client
    .generate_content()
    .with_user_message("What's the weather in Tokyo?")
    .with_function(get_weather)
    .with_function_calling_mode(FunctionCallingMode::Any)
    .execute()
    .await?;

if let Some(call) = response.function_calls().first() {
    println!("Call: {} with args: {}", call.name, call.args);
}

Google Search Grounding

use adk_gemini::{Gemini, Tool};

let response = client
    .generate_content()
    .with_user_message("What is the current Google stock price?")
    .with_tool(Tool::google_search())
    .execute()
    .await?;

println!("{}", response.text());

// Access grounding metadata
if let Some(grounding) = response.candidates.first()
    .and_then(|c| c.grounding_metadata.as_ref())
{
    if let Some(chunks) = &grounding.grounding_chunks {
        for chunk in chunks {
            if let Some(web) = &chunk.web {
                println!("Source: {} - {}", web.title, web.uri);
            }
        }
    }
}

URL Context

use adk_gemini::{Gemini, Tool};

let response = client
    .generate_content()
    .with_user_message("Summarize this page: https://docs.rs/tokio/latest/tokio/")
    .with_tool(Tool::url_context())
    .execute()
    .await?;

Thinking Mode (Gemini 2.5 / Gemini 3 Pro)

let client = Gemini::pro(api_key)?;

let response = client
    .generate_content()
    .with_user_message("Solve: what is the integral of x^2 * e^x dx?")
    .with_thinking_budget(2048)
    .with_thoughts_included(true)
    .execute()
    .await?;

// Access the model's reasoning
for thought in response.thoughts() {
    println!("Thought: {}", thought);
}
println!("Answer: {}", response.text());

Structured JSON Output

use serde_json::json;

let schema = json!({
    "type": "object",
    "properties": {
        "name": { "type": "string" },
        "year_created": { "type": "integer" },
        "key_features": { "type": "array", "items": { "type": "string" } }
    },
    "required": ["name", "year_created", "key_features"]
});

let response = client
    .generate_content()
    .with_user_message("Tell me about the Rust programming language.")
    .with_response_mime_type("application/json")
    .with_response_schema(schema)
    .execute()
    .await?;

let parsed: serde_json::Value = serde_json::from_str(&response.text())?;

Text Embeddings

use adk_gemini::{Gemini, Model, TaskType};

let client = Gemini::with_model(api_key, Model::TextEmbedding004)?;

let response = client
    .embed_content()
    .with_text("Hello, world!")
    .with_task_type(TaskType::RetrievalDocument)
    .execute()
    .await?;

println!("Embedding dimensions: {}", response.embedding.values.len());

Image Generation

let client = Gemini::with_model(
    api_key,
    "models/gemini-2.5-flash-image-preview".to_string(),
)?;

let response = client
    .generate_content()
    .with_user_message("A photorealistic image of a mountain lake at sunset")
    .execute()
    .await?;

// Response contains inline image data (base64-encoded)
for candidate in &response.candidates {
    if let Some(parts) = &candidate.content.parts {
        for part in parts {
            if let adk_gemini::Part::InlineData { inline_data } = part {
                // inline_data.data contains base64-encoded image bytes
                // inline_data.mime_type contains the MIME type
            }
        }
    }
}

Text-to-Speech

use adk_gemini::*;

let client = Gemini::with_model(
    api_key,
    "models/gemini-2.5-flash-preview-tts".to_string(),
)?;

let response = client
    .generate_content()
    .with_user_message("Hello! This is AI-generated speech.")
    .with_generation_config(GenerationConfig {
        response_modalities: Some(vec!["AUDIO".to_string()]),
        speech_config: Some(SpeechConfig {
            voice_config: Some(VoiceConfig {
                prebuilt_voice_config: Some(PrebuiltVoiceConfig {
                    voice_name: "Puck".to_string(),
                }),
            }),
            multi_speaker_voice_config: None,
        }),
        ..Default::default()
    })
    .execute()
    .await?;

Content Caching

use std::time::Duration;

let cache = client
    .create_cache()
    .with_display_name("My Analysis Cache")?
    .with_system_instruction("You are a literary analyst.")
    .with_user_message(long_document_text)
    .with_ttl(Duration::from_secs(3600))
    .execute()
    .await?;

// Reuse the cache across multiple queries
let response = client
    .generate_content()
    .with_cached_content(&cache)
    .with_user_message("What is the central theme?")
    .execute()
    .await?;

Batch Processing

let request1 = client
    .generate_content()
    .with_user_message("What is the meaning of life?")
    .build();

let request2 = client
    .generate_content()
    .with_user_message("What is the best programming language?")
    .build();

let batch = client
    .batch_generate_content()
    .with_request(request1)
    .with_request(request2)
    .execute()
    .await?;

Multi-Turn Conversation

let response1 = client
    .generate_content()
    .with_system_prompt("You are a travel assistant.")
    .with_user_message("I'm planning a trip to Japan.")
    .execute()
    .await?;

let response2 = client
    .generate_content()
    .with_system_prompt("You are a travel assistant.")
    .with_user_message("I'm planning a trip to Japan.")
    .with_model_message(response1.text())
    .with_user_message("What about cherry blossom season?")
    .execute()
    .await?;

Vertex AI (Google Cloud)

// API key auth
let client = Gemini::with_google_cloud(api_key, "my-project", "us-central1")?;

// Application Default Credentials
let client = Gemini::with_google_cloud_adc("my-project", "us-central1")?;

// Service account
let sa_json = std::fs::read_to_string("service-account.json")?;
let client = Gemini::with_google_cloud_service_account_json(
    &sa_json, "my-project", "us-central1", "gemini-2.5-flash",
)?;

// Workload Identity Federation
let wif_json = std::fs::read_to_string("wif-credentials.json")?;
let client = Gemini::with_google_cloud_wif_json(
    &wif_json, "my-project", "us-central1", "gemini-2.5-flash",
)?;

Generation Config

use adk_gemini::GenerationConfig;

let response = client
    .generate_content()
    .with_user_message("Tell me a joke.")
    .with_generation_config(GenerationConfig {
        temperature: Some(0.9),
        top_p: Some(0.95),
        top_k: Some(40),
        max_output_tokens: Some(1024),
        ..Default::default()
    })
    .execute()
    .await?;

API Modules

Module Description
generation Content generation (text, images, audio)
embedding Text embedding generation
batch Batch processing for multiple requests
files File upload and management
cache Content caching for reusable contexts
safety Content moderation and safety settings
tools Function calling and tool integration
models Core primitive types (Content, Part, Role, Blob)
prelude Convenient re-exports of commonly used types

Environment Variables

# Gemini API
GEMINI_API_KEY=your-api-key
# or
GOOGLE_API_KEY=your-api-key

# Vertex AI (Google Cloud)
GOOGLE_CLOUD_PROJECT=my-project
GOOGLE_CLOUD_LOCATION=us-central1
GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json

Running Examples

export GEMINI_API_KEY=your-api-key

cargo run -p adk-gemini --example simple
cargo run -p adk-gemini --example streaming
cargo run -p adk-gemini --example tools
cargo run -p adk-gemini --example google_search
cargo run -p adk-gemini --example thinking_basic
cargo run -p adk-gemini --example embedding
cargo run -p adk-gemini --example image_generation
cargo run -p adk-gemini --example structured_response
cargo run -p adk-gemini --example cache_basic
cargo run -p adk-gemini --example batch_generate
cargo run -p adk-gemini --example url_context
cargo run -p adk-gemini --example simple_speech_generation

Related Crates

  • adk-rust - Meta-crate with all components
  • adk-model - Multi-provider LLM integrations (uses adk-gemini internally)
  • adk-core - Core Llm trait
  • adk-agent - Agent implementations

License

MIT

Original work Copyright (c) 2024 @flachesis Modifications Copyright (c) 2024 Zavora AI

Part of ADK-Rust

This crate is part of the ADK-Rust framework for building AI agents in Rust.


Attribution

This crate is a fork of the excellent gemini-rust library by @flachesis. We are deeply grateful for their work in creating and maintaining this high-quality Gemini API client.

Upstream Project

Why a Fork?

The ADK-Rust project requires certain extensions for deep integration with the Agent Development Kit — exporting additional types (e.g., GroundingMetadata, GroundingChunk) for grounding support, future ADK-specific extensions for agent workflows, and workspace-level version management. We regularly sync with upstream to incorporate improvements and fixes.

Our Commitment

  1. Staying aligned with the upstream gemini-rust project as much as possible
  2. Contributing back any general improvements that benefit the broader community
  3. Maintaining attribution and respecting the original MIT license
  4. Minimizing divergence — only adding ADK-specific extensions when necessary

Acknowledgments

  • @flachesis — Creator and maintainer of the original gemini-rust library
  • @npatsakula — Major contributions to the upstream project