1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
use opencv::core::{KeyPoint, Mat, Scalar, Size, Vector, CV_32F, CV_32FC3, CV_8U, CV_8UC3};
use std::error::Error;
use std::io::{sink, Write};
use std::mem::swap;

use adder_codec_core::codec::empty::stream::EmptyOutput;
use adder_codec_core::codec::encoder::Encoder;
use adder_codec_core::codec::raw::stream::{RawOutput, RawOutputInterleaved};
use adder_codec_core::codec::{
    CodecError, CodecMetadata, EncoderType, LATEST_CODEC_VERSION,
};
use adder_codec_core::{
    Coord, DeltaT, Event, Mode, PlaneError, PlaneSize, SourceCamera, SourceType, TimeMode,
};
use bumpalo::Bump;
use std::sync::mpsc::{channel, Sender};

use adder_codec_core::D;
use opencv::highgui;
use opencv::imgproc::resize;
use opencv::prelude::*;

use crate::framer::scale_intensity::{FrameValue};
use crate::transcoder::event_pixel_tree::{Intensity32, PixelArena};

#[cfg(feature = "compression")]
use adder_codec_core::codec::compressed::stream::CompressedOutput;
use adder_codec_core::Mode::{Continuous};
use davis_edi_rs::util::reconstructor::ReconstructionError;
use itertools::Itertools;
use ndarray::{Array, Array3, Axis, ShapeError};
use rayon::iter::IntoParallelIterator;
use rayon::iter::ParallelIterator;
use rayon::iter::{IndexedParallelIterator, IntoParallelRefMutIterator};
use rayon::ThreadPool;


use thiserror::Error;
use tokio::task::JoinError;

/// Various errors that can occur during an ADΔER transcode
#[derive(Error, Debug)]
pub enum SourceError {
    /// Could not open source file
    #[error("Could not open source file")]
    Open,

    /// Incorrect parameters for the given source
    #[error("ADDER parameters are invalid for the given source: `{0}`")]
    BadParams(String),

    /// When a [Framed](crate::transcoder::source::framed::Framed) source is used, but the start frame is out of bounds"
    #[error("start frame `{0}` is out of bounds")]
    StartOutOfBounds(u32),

    /// No more data to consume from the video source
    #[error("Source buffer is empty")]
    BufferEmpty,

    /// Source buffer channel is closed
    #[error("Source buffer channel is closed")]
    BufferChannelClosed,

    /// No data from next spot in buffer
    #[error("No data from next spot in buffer")]
    NoData,

    /// Data not initialized
    #[error("Data not initialized")]
    UninitializedData,

    /// OpenCV error
    #[error("OpenCV error")]
    OpencvError(opencv::Error),

    /// Codec error
    #[error("Codec core error")]
    CodecError(CodecError),

    /// EDI error
    #[error("EDI error")]
    EdiError(ReconstructionError),

    /// Shape error
    #[error("Shape error")]
    ShapeError(#[from] ShapeError),

    /// Plane error
    #[error("Plane error")]
    PlaneError(#[from] PlaneError),

    /// Handle join error
    #[error("Handle join error")]
    JoinError(#[from] JoinError),
}

impl From<opencv::Error> for SourceError {
    fn from(value: opencv::Error) -> Self {
        SourceError::OpencvError(value)
    }
}
impl From<adder_codec_core::codec::CodecError> for SourceError {
    fn from(value: CodecError) -> Self {
        SourceError::CodecError(value)
    }
}

/// The display mode
#[derive(PartialEq, Eq, Clone, Copy, Debug, Default)]
pub enum FramedViewMode {
    /// Visualize the intensity (2^[`D`] / [`DeltaT`]) of each pixel's most recent event
    #[default]
    Intensity,

    /// Visualize the [`D`] component of each pixel's most recent event
    D,

    /// Visualize the temporal component ([`DeltaT`]) of each pixel's most recent event
    DeltaT,

    /// Surface of Active Events. Visualize the time elapsed since each pixel last fired an event
    /// (most recent events will have greater values)
    SAE,
}

/// Running state of the video transcode
pub struct VideoState {
    /// The size of the imaging plane
    pub plane: PlaneSize,
    pub(crate) pixel_tree_mode: Mode,

    /// The number of rows of pixels to process at a time (per thread)
    pub chunk_rows: usize,

    /// The number of input intervals (of fixed time) processed so far
    pub in_interval_count: u32,
    pub(crate) c_thresh_pos: u8,
    pub(crate) c_thresh_neg: u8,
    pub(crate) delta_t_max: u32,
    pub(crate) ref_time: u32,
    pub(crate) ref_time_divisor: f64,
    pub(crate) tps: DeltaT,
    pub(crate) show_display: bool,
    pub(crate) show_live: bool,
    pub feature_detection: bool,
}

impl Default for VideoState {
    fn default() -> Self {
        VideoState {
            plane: PlaneSize::default(),
            pixel_tree_mode: Continuous,
            chunk_rows: 64,
            in_interval_count: 1,
            c_thresh_pos: 0,
            c_thresh_neg: 0,
            delta_t_max: 7650,
            ref_time: 255,
            ref_time_divisor: 1.0,
            tps: 7650,
            show_display: false,
            show_live: false,
            feature_detection: false,
        }
    }
}

/// A builder for a [`Video`]
pub trait VideoBuilder<W> {
    /// Set both the positive and negative contrast thresholds
    fn contrast_thresholds(self, c_thresh_pos: u8, c_thresh_neg: u8) -> Self;

    /// Set the positive contrast threshold
    fn c_thresh_pos(self, c_thresh_pos: u8) -> Self;

    /// Set the negative contrast threshold
    fn c_thresh_neg(self, c_thresh_neg: u8) -> Self;

    /// Set the chunk rows
    fn chunk_rows(self, chunk_rows: usize) -> Self;

    /// Set the time parameters
    fn time_parameters(
        self,
        tps: DeltaT,
        ref_time: DeltaT,
        delta_t_max: DeltaT,
        time_mode: Option<TimeMode>,
    ) -> Result<Self, SourceError>
    where
        Self: std::marker::Sized;

    /// Set the [`Encoder`]
    fn write_out(
        self,
        source_camera: SourceCamera,
        time_mode: TimeMode,
        encoder_type: EncoderType,
        write: W,
    ) -> Result<Box<Self>, SourceError>;

    /// Set whether or not the show the live display
    fn show_display(self, show_display: bool) -> Self;

    fn detect_features(self, detect_features: bool) -> Self;
}

// impl VideoBuilder for Video {}

/// Attributes common to ADΔER transcode process
pub struct Video<W: Write> {
    /// The current state of the video transcode
    pub state: VideoState,
    pub(crate) event_pixel_trees: Array3<PixelArena>,

    // pub instan: Mat,
    /// The current instantaneous display frame
    pub instantaneous_frame: Mat,

    /// The current instantaneous frame, for determining features
    pub running_intensities: Array3<i32>,

    abs_intensity_mat: Mat,

    /// The current view mode of the instantaneous frame
    pub instantaneous_view_mode: FramedViewMode,

    /// Channel for sending events to the encoder
    pub event_sender: Sender<Vec<Event>>,
    pub(crate) encoder: Encoder<W>,
    pub encoder_type: EncoderType,
    // TODO: Hold multiple encoder options and an enum, so that boxing isn't required.
    // Also hold a state for whether or not to write out events at all, so that a null writer isn't required.
}
unsafe impl<W: Write> Send for Video<W> {}

impl<W: Write + 'static> Video<W> {
    /// Initialize the Video with default parameters.
    pub(crate) fn new(
        plane: PlaneSize,
        pixel_tree_mode: Mode,
        writer: Option<W>,
    ) -> Result<Video<W>, SourceError> {
        let mut state = VideoState {
            pixel_tree_mode,
            ..Default::default()
        };

        let mut data = Vec::new();
        for y in 0..plane.h() {
            for x in 0..plane.w() {
                for c in 0..plane.c() {
                    let px = PixelArena::new(
                        1.0,
                        Coord {
                            x,
                            y,
                            c: match &plane.c() {
                                1 => None,
                                _ => Some(c),
                            },
                        },
                    );
                    data.push(px);
                }
            }
        }

        let event_pixel_trees: Array3<PixelArena> =
            Array3::from_shape_vec((plane.h_usize(), plane.w_usize(), plane.c_usize()), data)?;
        let mut instantaneous_frame = Mat::default();
        match plane.c() {
            1 => unsafe {
                instantaneous_frame.create_rows_cols(plane.h() as i32, plane.w() as i32, CV_8U)?;
            },
            _ => unsafe {
                instantaneous_frame.create_rows_cols(
                    plane.h() as i32,
                    plane.w() as i32,
                    CV_8UC3,
                )?;
            },
        }

        let mut sae_mat = Mat::default();
        match plane.c() {
            1 => unsafe {
                sae_mat.create_rows_cols(plane.h() as i32, plane.w() as i32, CV_32F)?;
            },
            _ => unsafe {
                sae_mat.create_rows_cols(plane.h() as i32, plane.w() as i32, CV_32FC3)?;
            },
        }
        let abs_intensity_mat = sae_mat.clone();

        let running_intensities = Array::zeros((plane.h_usize(), plane.w_usize(), plane.c_usize()));

        state.plane = plane;
        let instantaneous_view_mode = FramedViewMode::Intensity;
        let (event_sender, _) = channel();
        let meta = CodecMetadata {
            codec_version: LATEST_CODEC_VERSION,
            header_size: 0,
            time_mode: TimeMode::AbsoluteT,
            plane: state.plane,
            tps: state.tps,
            ref_interval: state.ref_time,
            delta_t_max: state.delta_t_max,
            event_size: 0,
            source_camera: SourceCamera::default(), // TODO: Allow for setting this
        };

        match writer {
            None => {
                let encoder: Encoder<W> = Encoder::new_empty(EmptyOutput::new(meta, sink()));
                Ok(Video {
                    state,
                    event_pixel_trees,
                    instantaneous_frame,
                    running_intensities,
                    abs_intensity_mat,
                    instantaneous_view_mode,
                    event_sender,
                    encoder,
                    encoder_type: EncoderType::Empty,
                })
            }
            Some(w) => {
                let encoder = Encoder::new_raw(
                    // TODO: Allow for compressed representation (not just raw)
                    RawOutput::new(meta, w),
                );
                Ok(Video {
                    state,
                    event_pixel_trees,
                    instantaneous_frame,
                    running_intensities,
                    abs_intensity_mat,
                    instantaneous_view_mode,
                    event_sender,
                    encoder,
                    encoder_type: EncoderType::Empty,
                })
            }
        }
    }

    /// Set the positive contrast threshold
    pub fn c_thresh_pos(mut self, c_thresh_pos: u8) -> Self {
        for px in self.event_pixel_trees.iter_mut() {
            px.c_thresh = c_thresh_pos;
        }
        self.state.c_thresh_pos = c_thresh_pos;
        self
    }

    /// Set the negative contrast threshold
    pub fn c_thresh_neg(self, _c_thresh_neg: u8) -> Self {
        unimplemented!();
        // for px in self.event_pixel_trees.iter_mut() {
        //     px.c_thresh = c_thresh_neg;
        // }
        // self
    }

    /// Set the number of rows to process at a time (in each thread)
    pub fn chunk_rows(mut self, chunk_rows: usize) -> Self {
        self.state.chunk_rows = chunk_rows;
        self
    }

    /// Set the time parameters for the video.
    ///
    /// These parameters, in conjunction, determine the temporal resolution and maximum transcode
    /// accuracy/quality.
    ///
    /// # Arguments
    ///
    /// * `tps`: ticks per second
    /// * `ref_time`: reference time in ticks.
    /// * `delta_t_max`: maximum time difference between events of the same pixel, in ticks
    ///
    /// returns: `Result<Video<W>, Box<dyn Error, Global>>`
    pub fn time_parameters(
        mut self,
        tps: DeltaT,
        ref_time: DeltaT,
        delta_t_max: DeltaT,
        time_mode: Option<TimeMode>,
    ) -> Result<Self, SourceError> {
        self.event_pixel_trees.par_map_inplace(|px| {
            px.time_mode(time_mode);
        });

        if ref_time > f32::MAX as u32 {
            eprintln!(
                "Reference time {} is too large. Keeping current value of {}.",
                ref_time, self.state.ref_time
            );
            return Ok(self);
        }
        if tps > f32::MAX as u32 {
            eprintln!(
                "Time per sample {} is too large. Keeping current value of {}.",
                tps, self.state.tps
            );
            return Ok(self);
        }
        if delta_t_max > f32::MAX as u32 {
            eprintln!(
                "Delta t max {} is too large. Keeping current value of {}.",
                delta_t_max, self.state.delta_t_max
            );
            return Ok(self);
        }
        if delta_t_max < ref_time {
            eprintln!(
                "Delta t max {} is smaller than reference time {}. Keeping current value of {}.",
                delta_t_max, ref_time, self.state.delta_t_max
            );
            return Ok(self);
        }
        self.state.delta_t_max = delta_t_max;
        self.state.ref_time = ref_time;
        self.state.tps = tps;

        Ok(self)
    }

    /// Write out the video to a file.
    ///
    /// # Arguments
    ///
    /// * `source_camera`: the type of video source
    /// * `time_mode`: the time mode of the video
    /// * `write`: the output stream to write to
    pub fn write_out(
        mut self,
        source_camera: Option<SourceCamera>,
        time_mode: Option<TimeMode>,
        encoder_type: EncoderType,
        write: W,
    ) -> Result<Self, SourceError> {
        // TODO: Allow for compressed representation (not just raw)
        let encoder: Encoder<_> = match encoder_type {
            EncoderType::Compressed => {
                #[cfg(feature = "compression")]
                {
                    let compression = CompressedOutput::new(
                        CodecMetadata {
                            codec_version: LATEST_CODEC_VERSION,
                            header_size: 0,
                            time_mode: time_mode.unwrap_or_default(),
                            plane: self.state.plane,
                            tps: self.state.tps,
                            ref_interval: self.state.ref_time,
                            delta_t_max: self.state.delta_t_max,
                            event_size: 0,
                            source_camera: source_camera.unwrap_or_default(),
                        },
                        write,
                    );
                    Encoder::new_compressed(compression)
                }
                #[cfg(not(feature = "compression"))]
                {
                    return Err(SourceError::BadParams(
                        "Compressed representation is experimental and is not enabled by default!"
                            .to_string(),
                    ));
                }
            }
            EncoderType::Raw => {
                let compression = RawOutput::new(
                    CodecMetadata {
                        codec_version: LATEST_CODEC_VERSION,
                        header_size: 0,
                        time_mode: time_mode.unwrap_or_default(),
                        plane: self.state.plane,
                        tps: self.state.tps,
                        ref_interval: self.state.ref_time,
                        delta_t_max: self.state.delta_t_max,
                        event_size: 0,
                        source_camera: source_camera.unwrap_or_default(),
                    },
                    write,
                );
                Encoder::new_raw(compression)
            }
            EncoderType::RawInterleaved => {
                let compression = RawOutputInterleaved::new(
                    CodecMetadata {
                        codec_version: LATEST_CODEC_VERSION,
                        header_size: 0,
                        time_mode: time_mode.unwrap_or_default(),
                        plane: self.state.plane,
                        tps: self.state.tps,
                        ref_interval: self.state.ref_time,
                        delta_t_max: self.state.delta_t_max,
                        event_size: 0,
                        source_camera: source_camera.unwrap_or_default(),
                    },
                    write,
                );
                Encoder::new_raw_interleaved(compression)
            }
            EncoderType::Empty => {
                let compression = EmptyOutput::new(
                    CodecMetadata {
                        codec_version: LATEST_CODEC_VERSION,
                        header_size: 0,
                        time_mode: time_mode.unwrap_or_default(),
                        plane: self.state.plane,
                        tps: self.state.tps,
                        ref_interval: self.state.ref_time,
                        delta_t_max: self.state.delta_t_max,
                        event_size: 0,
                        source_camera: source_camera.unwrap_or_default(),
                    },
                    sink(),
                );
                Encoder::new_empty(compression)
            }
        };

        self.encoder = encoder;
        self.encoder_type = encoder_type;

        self.event_pixel_trees.par_map_inplace(|px| {
            px.time_mode(time_mode);
        });
        Ok(self)
    }

    /// Set the display mode for the instantaneous view.
    pub fn show_display(mut self, show_display: bool) -> Self {
        self.state.show_display = show_display;
        self
    }

    /// Close and flush the stream writer.
    /// # Errors
    /// Returns an error if the stream writer cannot be closed cleanly.
    pub fn end_write_stream(&mut self) -> Result<(), SourceError> {
        let mut tmp: Encoder<W> =
            Encoder::new_empty(EmptyOutput::new(CodecMetadata::default(), sink()));
        swap(&mut self.encoder, &mut tmp);
        tmp.close_writer()?;
        Ok(())
    }

    #[allow(clippy::needless_pass_by_value)]
    pub(crate) fn integrate_matrix(
        &mut self,
        matrix: Mat,
        time_spanned: f32,
        view_interval: u32,
    ) -> std::result::Result<Vec<Vec<Event>>, SourceError> {
        let color = self.state.plane.c() != 1;

        let frame_arr: &[u8] = match matrix.data_bytes() {
            Ok(v) => v,
            Err(e) => {
                return Err(SourceError::OpencvError(e));
            }
        };
        if self.state.in_interval_count == 0 {
            self.set_initial_d(frame_arr);
        }

        self.state.in_interval_count += 1;

        self.state.show_live = self.state.in_interval_count % view_interval == 0;

        let px_per_chunk: usize = self.state.chunk_rows * self.state.plane.area_wc();

        // Important: if framing the events simultaneously, then the chunk division must be
        // exactly the same as it is for the framer
        let big_buffer: Vec<Vec<Event>> = self
            .event_pixel_trees
            .axis_chunks_iter_mut(Axis(0), self.state.chunk_rows)
            .into_par_iter()
            .enumerate()
            .map(|(chunk_idx, mut chunk)| {
                let mut buffer: Vec<Event> = Vec::with_capacity(px_per_chunk);
                let bump = Bump::new();
                let base_val = bump.alloc(0);
                let px_idx = bump.alloc(0);
                let frame_val = bump.alloc(0);
                let frame_val_intensity32 = bump.alloc(0.0);

                for (chunk_px_idx, px) in chunk.iter_mut().enumerate() {
                    *px_idx = chunk_px_idx + px_per_chunk * chunk_idx;

                    *frame_val_intensity32 = (f64::from(frame_arr[*px_idx])
                        * self.state.ref_time_divisor)
                        as Intensity32;
                    *frame_val = *frame_val_intensity32 as u8;

                    integrate_for_px(
                        px,
                        base_val,
                        frame_val,
                        *frame_val_intensity32, // In this case, frame val is the same as intensity to integrate
                        time_spanned,
                        &mut buffer,
                        &self.state,
                    );
                }
                buffer
            })
            .collect();

        let db = match self.instantaneous_frame.data_bytes_mut() {
            Ok(v) => v,
            Err(e) => {
                return Err(SourceError::OpencvError(e));
            }
        };
        let mut sae_mat = Mat::default();

        if color {
            unsafe {
                sae_mat.create_rows_cols(
                    self.state.plane.h() as i32,
                    self.state.plane.w() as i32,
                    CV_32FC3,
                )?;
            }
        } else {
            unsafe {
                sae_mat.create_rows_cols(
                    self.state.plane.h() as i32,
                    self.state.plane.w() as i32,
                    CV_32F,
                )?;
            }
        }

        sae_mat = sae_mat.clone();

        // TODO: When there's full support for various bit-depth sources, modify this accordingly
        let practical_d_max =
            fast_math::log2_raw(255.0 * (self.state.delta_t_max / self.state.ref_time) as f32);
        db.iter_mut()
            .zip(self.running_intensities.iter_mut())
            .enumerate()
            .for_each(|(idx, (val, running))| {
                let y = idx / self.state.plane.area_wc();
                let x = (idx % self.state.plane.area_wc()) / self.state.plane.c_usize();
                let c = idx % self.state.plane.c_usize();

                // let sae_time_since = self.event_pixel_trees[[y, x, c]].running_t
                //     - self.event_pixel_trees[[y, x, c]].last_fired_t;
                let sae_time = self.event_pixel_trees[[y, x, c]].last_fired_t;
                *val = match self.event_pixel_trees[[y, x, c]].arena[0].best_event {
                    Some(event) => u8::get_frame_value(
                        &event.into(),
                        SourceType::U8,
                        self.state.ref_time as DeltaT,
                        practical_d_max,
                        self.state.delta_t_max,
                        self.instantaneous_view_mode,
                        sae_time,
                    ),
                    None => *val,
                };

                // Only track the running state if we're in grayscale mode
                if self.state.feature_detection && !color {
                    *running = *val as i32;
                }

                if self.instantaneous_view_mode == FramedViewMode::SAE {
                    // let tmp = sae_mat.at_2d::<f32>(y as i32, x as i32).unwrap();
                    unsafe {
                        *sae_mat.at_2d_mut::<f32>(y as i32, x as i32).unwrap() = sae_time as f32;
                    }
                }
            });

        if self.instantaneous_view_mode == FramedViewMode::SAE {
            let mut sae_mat_norm = Mat::default();
            opencv::core::normalize(
                &sae_mat,
                &mut sae_mat_norm,
                0.0,
                255.0,
                opencv::core::NORM_MINMAX,
                opencv::core::CV_8U,
                &Mat::default(),
            )?;
            self.instantaneous_frame = sae_mat_norm;
        }

        if self.instantaneous_view_mode == FramedViewMode::DeltaT {
            opencv::core::normalize(
                &self.instantaneous_frame.clone(),
                &mut self.instantaneous_frame,
                0.0,
                255.0,
                opencv::core::NORM_MINMAX,
                opencv::core::CV_8U,
                &Mat::default(),
            )?;
            opencv::core::subtract(
                &Scalar::new(255.0, 255.0, 255.0, 0.0),
                &self.instantaneous_frame.clone(),
                &mut self.instantaneous_frame,
                &Mat::default(),
                opencv::core::CV_8U,
            )?;
        }

        // TODO: Add a toggle option to only calculate features if user says so
        if self.state.feature_detection && !color {
            let mut keypoints = Vector::<KeyPoint>::new();
            opencv::features2d::fast(&self.instantaneous_frame, &mut keypoints, 50, true)?;
            let mut keypoint_mat = Mat::default();
            opencv::features2d::draw_keypoints(
                &self.instantaneous_frame,
                &keypoints,
                &mut keypoint_mat,
                Scalar::new(0.0, 0.0, 255.0, 0.0),
                opencv::features2d::DrawMatchesFlags::DEFAULT,
            )?;
            show_display_force("keypoints", &keypoint_mat, 1)?;

            for events in &big_buffer {
                for (e1, e2) in events.iter().tuple_windows() {
                    self.encoder.ingest_event(*e1)?;
                    if e2.delta_t != e1.delta_t {
                        self.feature_test(e1);
                    }
                }
            }
        }

        if self.state.show_live {
            show_display("instance", &self.instantaneous_frame, 1, self)?;
        }

        Ok(big_buffer)
    }

    fn set_initial_d(&mut self, frame_arr: &[u8]) {
        self.event_pixel_trees.par_map_inplace(|px| {
            let idx = px.coord.y as usize * self.state.plane.area_wc()
                + px.coord.x as usize * self.state.plane.c_usize()
                + px.coord.c.unwrap_or(0) as usize;
            let intensity = frame_arr[idx];
            let d_start = f32::from(intensity).log2().floor() as D;
            px.arena[0].set_d(d_start);
            px.base_val = intensity;
        });
    }

    /// Get `ref_time`
    pub fn get_ref_time(&self) -> u32 {
        self.state.ref_time
    }

    /// Get `delta_t_max`
    pub fn get_delta_t_max(&self) -> u32 {
        self.state.delta_t_max
    }

    /// Get `tps`
    pub fn get_tps(&self) -> u32 {
        self.state.tps
    }

    /// Set a new value for `delta_t_max`
    pub fn update_delta_t_max(&mut self, dtm: u32) {
        // Validate new value
        self.state.delta_t_max = self.state.ref_time.max(dtm);
    }

    /// Set a new bool for `feature_detection`
    pub fn update_detect_features(&mut self, detect_features: bool) {
        // Validate new value
        self.state.feature_detection = detect_features;
    }

    /// Set a new value for `c_thresh_pos`
    pub fn update_adder_thresh_pos(&mut self, c: u8) {
        for px in self.event_pixel_trees.iter_mut() {
            px.c_thresh = c;
        }
        self.state.c_thresh_pos = c;
    }

    /// Set a new value for `c_thresh_neg`
    pub fn update_adder_thresh_neg(&mut self, _c: u8) {
        unimplemented!();
        // for px in self.event_pixel_trees.iter_mut() {
        //     px.c_thresh = c;
        // }
        // self.state.c_thresh_neg = c;
    }

    pub(crate) fn feature_test(&mut self, e: &Event) -> Result<(), Box<dyn Error>> {
        if self.is_feature(e)? {
            // Display the feature on the viz frame
            let color: u8 = 255;
            let radius = 2;
            for i in -radius..=radius {
                *self
                    .instantaneous_frame
                    .at_2d_mut(e.coord.y as i32 + i, e.coord.x as i32)? = color;
                *self
                    .instantaneous_frame
                    .at_2d_mut(e.coord.y as i32, e.coord.x as i32 + i)? = color;
            }

            // Reset the threshold for that pixel and its neighbors

            let radius = 30;
            for r in (e.coord.y() as i32 - radius).max(0)
                ..(e.coord.y() as i32 + radius).min(self.state.plane.h() as i32)
            {
                for c in (e.coord.x() as i32 - radius).max(0)
                    ..(e.coord.x() as i32 + radius).min(self.state.plane.w() as i32)
                {
                    self.event_pixel_trees[[r as usize, c as usize, e.coord.c_usize()]].c_thresh =
                        1;
                }
            }
        }
        Ok(())
    }

    fn is_feature(&self, e: &Event) -> Result<bool, Box<dyn Error>> {
        if e.coord
            .is_border(self.state.plane.w_usize(), self.state.plane.h_usize(), 3)
        {
            return Ok(false);
        }

        let img = &self.running_intensities;
        let candidate: i32 = img[(e.coord.y_usize(), e.coord.x_usize(), 0)];

        let mut count = 0;
        if (img[(
            (e.coord.y as i32 + circle3_[4][1]) as usize,
            (e.coord.x as i32 + circle3_[4][0]) as usize,
            0,
        )]
            - candidate)
            .abs()
            > INTENSITY_THRESHOLD
        {
            count += 1;
        }
        if (img[(
            (e.coord.y as i32 + circle3_[12][1]) as usize,
            (e.coord.x as i32 + circle3_[12][0]) as usize,
            0,
        )]
            - candidate)
            .abs()
            > INTENSITY_THRESHOLD
        {
            count += 1;
        }
        if (img[(
            (e.coord.y as i32 + circle3_[1][1]) as usize,
            (e.coord.x as i32 + circle3_[1][0]) as usize,
            0,
        )]
            - candidate)
            .abs()
            > INTENSITY_THRESHOLD
        {
            count += 1;
        }

        if (img[(
            (e.coord.y as i32 + circle3_[7][1]) as usize,
            (e.coord.x as i32 + circle3_[7][0]) as usize,
            0,
        )]
            - candidate)
            .abs()
            > INTENSITY_THRESHOLD
        {
            count += 1;
        }

        if count <= 2 {
            return Ok(false);
        }

        let streak_size = 12;

        for i in 0..16 {
            // Are we looking at a bright or dark streak?
            let brighter = img[(
                (e.coord.y as i32 + circle3_[i][1]) as usize,
                (e.coord.x as i32 + circle3_[i][0]) as usize,
                0,
            )]
                > candidate;

            let mut did_break = false;

            for j in 0..streak_size {
                if brighter {
                    if img[(
                        (e.coord.y as i32 + circle3_[(i + j) % 16][1]) as usize,
                        (e.coord.x as i32 + circle3_[(i + j) % 16][0]) as usize,
                        0,
                    )]
                        <= candidate + INTENSITY_THRESHOLD
                    {
                        did_break = true;
                    }
                } else if img[(
                    (e.coord.y as i32 + circle3_[(i + j) % 16][1]) as usize,
                    (e.coord.x as i32 + circle3_[(i + j) % 16][0]) as usize,
                    0,
                )]
                    >= candidate - INTENSITY_THRESHOLD
                {
                    did_break = true;
                }
            }

            if !did_break {
                return Ok(true);
            }
        }

        Ok(false)
    }

    pub fn detect_features(mut self, detect_features: bool) -> Self {
        self.state.feature_detection = detect_features;
        self
    }
}

const INTENSITY_THRESHOLD: i32 = 30;

#[rustfmt::skip]
const circle3_: [[i32; 2]; 16] = [
    [0, 3], [1, 3], [2, 2], [3, 1],
    [3, 0], [3, -1], [2, -2], [1, -3],
    [0, -3], [-1, -3], [-2, -2], [-3, -1],
    [-3, 0], [-3, 1], [-2, 2], [-1, 3]
];

/// Integrate an intensity value for a pixel, over a given time span
///
/// # Arguments
///
/// * `px`: the pixel to integrate
/// * `base_val`: holder for the base intensity value of the pixel
/// * `frame_val`: the intensity value, normalized to a fixed-length period defined by `ref_time`.
/// Used for determining if the pixel must pop its events.
/// * `intensity`: the intensity to integrate
/// * `time_spanned`: the time spanned by the intensity value
/// * `buffer`: the buffer to push events to
/// * `state`: the state of the video source
///
/// returns: ()
#[inline(always)]
pub fn integrate_for_px(
    px: &mut PixelArena,
    base_val: &mut u8,
    frame_val: &u8,
    intensity: Intensity32,
    time_spanned: f32,
    buffer: &mut Vec<Event>,
    state: &VideoState,
) -> bool {
    let mut grew_buffer = false;
    if px.need_to_pop_top {
        buffer.push(px.pop_top_event(intensity, state.pixel_tree_mode, state.ref_time));
        grew_buffer = true;
    }

    *base_val = px.base_val;

    if *frame_val < base_val.saturating_sub(px.c_thresh)
        || *frame_val > base_val.saturating_add(px.c_thresh)
    {
        px.pop_best_events(buffer, state.pixel_tree_mode, state.ref_time);
        grew_buffer = true;
        px.base_val = *frame_val;

        // If continuous mode and the D value needs to be different now
        if let Continuous = state.pixel_tree_mode {
            match px.set_d_for_continuous(intensity, state.ref_time) {
                None => {}
                Some(event) => buffer.push(event),
            };
        }
    }

    px.integrate(
        intensity,
        time_spanned.into(),
        state.pixel_tree_mode,
        state.delta_t_max,
        state.ref_time,
        state.c_thresh_pos,
    );

    if px.need_to_pop_top {
        buffer.push(px.pop_top_event(intensity, state.pixel_tree_mode, state.ref_time));
        grew_buffer = true;
    }

    grew_buffer
}

/// If `video.show_display`, shows the given [`Mat`] in an `OpenCV` window
/// with the given name.
///
/// # Errors
/// Returns an [`opencv::Error`] if the window cannot be shown, or the [`Mat`] cannot be scaled as
/// needed.
pub fn show_display<W: Write>(
    window_name: &str,
    mat: &Mat,
    wait: i32,
    video: &Video<W>,
) -> opencv::Result<()> {
    if video.state.show_display {
        show_display_force(window_name, mat, wait)?;
    }
    Ok(())
}

/// Shows the given [`Mat`] in an `OpenCV` window with the given name.
/// This function is the same as [`show_display`], except that it does not check
/// [`Video::show_display`].
/// This function is useful for debugging.
/// # Errors
/// Returns an [`opencv::Error`] if the window cannot be shown, or the [`Mat`] cannot be scaled as
/// needed.
pub fn show_display_force(window_name: &str, mat: &Mat, wait: i32) -> opencv::Result<()> {
    let mut tmp = Mat::default();

    if mat.rows() == 940 {
        highgui::imshow(window_name, mat)?;
    } else {
        let factor = mat.rows() as f32 / 940.0;
        resize(
            mat,
            &mut tmp,
            Size {
                width: (mat.cols() as f32 / factor) as i32,
                height: 940,
            },
            0.0,
            0.0,
            0,
        )?;
        highgui::imshow(window_name, &tmp)?;
    }

    highgui::wait_key(wait)?;
    Ok(())
}

/// A trait for objects that can be used as a source of data for the ADΔER transcode model.
pub trait Source<W: Write> {
    /// Intake one input interval worth of data from the source stream into the ADΔER model as
    /// intensities.
    fn consume(
        &mut self,
        view_interval: u32,
        thread_pool: &ThreadPool,
    ) -> Result<Vec<Vec<Event>>, SourceError>;

    /// Get a mutable reference to the [`Video`] object associated with this [`Source`].
    fn get_video_mut(&mut self) -> &mut Video<W>;

    /// Get an immutable reference to the [`Video`] object associated with this [`Source`].
    fn get_video_ref(&self) -> &Video<W>;

    /// Get the [`Video`] object associated with this [`Source`], consuming the [`Source`] in the
    /// process.
    fn get_video(self) -> Video<W>;
}