1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
use crate::transcoder::source::video::SourceError::BufferEmpty;
use crate::transcoder::source::video::{
integrate_for_px, show_display, Source, SourceError, Video, VideoBuilder,
};
use adder_codec_core::DeltaT;
use adder_codec_core::Mode::{Continuous, FramePerfect};
use davis_edi_rs::aedat::events_generated::Event as DvsEvent;
use davis_edi_rs::util::reconstructor::{IterVal, ReconstructionError, Reconstructor};
use rayon::iter::ParallelIterator;
use rayon::iter::{IndexedParallelIterator, IntoParallelRefMutIterator};
use opencv::core::{Mat, CV_8U};
use opencv::prelude::*;
use bumpalo::Bump;
use ndarray::{Array3, Axis};
use itertools::Itertools;
use rayon::iter::IntoParallelIterator;
use rayon::{current_num_threads, ThreadPool};
use std::cmp::max;
use std::error::Error;
use std::io::Write;
use std::mem::swap;
use std::thread;
use adder_codec_core::codec::{CodecError, EncoderType};
use adder_codec_core::{Event, PlaneSize, SourceCamera, SourceType, TimeMode};
use crate::framer::scale_intensity::FrameValue;
use crate::transcoder::event_pixel_tree::Intensity32;
use tokio::runtime::Runtime;
/// The EDI reconstruction mode, determining how intensities are integrated for the ADΔER model
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum TranscoderMode {
/// Perform a framed EDI reconstruction at a given (constant) frame rate. Each frame is
/// integrated in the ADΔER model with a [Framed](crate::transcoder::source::framed::Framed) source.
Framed,
/// Use EDI to reconstruct only one intensity frame for each input APS frame. That is, each
/// APS frame is deblurred, by using the DVS events that occur during that exposure.
/// The DVS events between deblurred APS frames are integrated directly and asynchronously
/// into the ADΔER model.
RawDavis,
/// Use EDI merely as a driver for providing the DVS events. The DVS events between are
/// integrated directly and asynchronously into the ADΔER model. Any APS frames are ignored.
RawDvs,
}
struct Integration<W> {
dvs_c: f64,
dvs_events_before: Option<Vec<DvsEvent>>,
dvs_events_last_after: Option<Vec<DvsEvent>>,
dvs_events_after: Option<Vec<DvsEvent>>,
pub temp_first_frame_start_timestamp: i64,
/// The timestamp for the start of the APS frame exposure
pub start_of_frame_timestamp: Option<i64>,
/// The timestamp for the end of the APS frame exposure
pub end_of_frame_timestamp: Option<i64>,
pub end_of_last_frame_timestamp: Option<i64>,
/// The timestamp of the last DVS event integrated for each pixel
pub dvs_last_timestamps: Array3<i64>,
/// The log-space last intensity value for each pixel
pub dvs_last_ln_val: Array3<f64>,
phantom: std::marker::PhantomData<W>,
}
/// Attributes of a framed video -> ADΔER transcode
pub struct Davis<W: Write> {
reconstructor: Option<Reconstructor>,
pub(crate) input_frame_scaled: Mat,
pub(crate) video: Video<W>,
image_8u: Mat,
thread_pool_edi: Option<ThreadPool>,
integration: Integration<W>,
/// The tokio runtime
pub rt: Runtime,
/// The latency between a DAVIS/DVS packet being sent by the camera and read by the reconstructor
latency: u128,
cached_mat_opt: Option<Option<IterVal>>,
optimize_adder_controller: bool,
/// The EDI reconstruction mode, determining how intensities are integrated for the ADΔER model
pub mode: TranscoderMode,
/// The time mode of the transcoded ADΔER video
pub time_mode: TimeMode,
}
unsafe impl<W: Write> Sync for Davis<W> {}
impl<W: Write + 'static> Davis<W> {
/// Create a new `Davis` transcoder
pub fn new(
reconstructor: Reconstructor,
rt: Runtime,
mode: TranscoderMode,
) -> Result<Self, Box<dyn Error>> {
let plane = PlaneSize::new(reconstructor.width, reconstructor.height, 1)?;
let video = Video::new(
plane,
match mode {
TranscoderMode::Framed => FramePerfect,
TranscoderMode::RawDavis => Continuous,
TranscoderMode::RawDvs => Continuous,
},
None,
)?
.chunk_rows(plane.h_usize() / 4);
let thread_pool_edi = rayon::ThreadPoolBuilder::new()
.num_threads(max(current_num_threads() - 4, 1))
.build()?;
let plane = &video.state.plane;
let timestamps = vec![0_i64; video.state.plane.volume()];
let dvs_last_timestamps: Array3<i64> = Array3::from_shape_vec(
(plane.h().into(), plane.w().into(), plane.c().into()),
timestamps,
)?;
let timestamps = vec![0.0_f64; video.state.plane.volume()];
let dvs_last_ln_val: Array3<f64> = Array3::from_shape_vec(
(plane.h() as usize, plane.w() as usize, plane.c() as usize),
timestamps,
)?;
let davis_source = Davis {
reconstructor: Some(reconstructor),
input_frame_scaled: Mat::default(),
video,
image_8u: Mat::default(),
thread_pool_edi: Some(thread_pool_edi),
integration: Integration {
dvs_c: 0.15,
dvs_events_before: None,
dvs_events_after: None,
dvs_events_last_after: None,
temp_first_frame_start_timestamp: 0,
start_of_frame_timestamp: None,
end_of_frame_timestamp: None,
end_of_last_frame_timestamp: None,
dvs_last_timestamps,
dvs_last_ln_val,
phantom: std::marker::PhantomData,
},
rt,
latency: 0,
cached_mat_opt: None,
optimize_adder_controller: false,
mode: TranscoderMode::Framed,
time_mode: TimeMode::default(),
};
Ok(davis_source)
}
/// Set whether to optimize the EDI controller (default: `false`) during EDI reconstruction.
///
/// If true, then the program will regularly re-calculate the optimal DVS contrast threshold.
pub fn optimize_adder_controller(mut self, optimize: bool) -> Self {
self.optimize_adder_controller = optimize;
self
}
/// Set the [`TranscoderMode`] (default: [`TranscoderMode::Framed`])
pub fn mode(mut self, mode: TranscoderMode) -> Self {
self.mode = mode;
self
}
/// Set the [`TimeMode`]
pub fn time_mode(mut self, time_mode: TimeMode) -> Self {
self.time_mode = time_mode;
self
}
// #[allow(clippy::cast_precision_loss)]
// fn control_latency(&mut self, opt_timestamp: Option<Instant>) {
// if self.optimize_adder_controller {
// match opt_timestamp {
// None => {}
// Some(timestamp) => {
// let latency = timestamp.elapsed().as_millis();
// if latency as f64 >= self.reconstructor.target_latency * 3.0 {
// self.video.state.c_thresh_pos =
// self.video.state.c_thresh_pos.saturating_add(1);
// self.video.state.c_thresh_neg =
// self.video.state.c_thresh_neg.saturating_add(1);
// } else {
// self.video.state.c_thresh_pos =
// self.video.state.c_thresh_pos.saturating_sub(1);
// self.video.state.c_thresh_neg =
// self.video.state.c_thresh_neg.saturating_sub(1);
// }
// eprintln!(
// " adder latency = {}, adder c = {}",
// latency, self.video.state.c_thresh_pos
// );
// }
// }
// }
// }
/// Get an immutable reference to the [`Reconstructor`]
pub fn get_reconstructor(&self) -> &Option<Reconstructor> {
&self.reconstructor
}
/// Get a mutable reference to the [`Reconstructor`]
pub fn get_reconstructor_mut(&mut self) -> &mut Option<Reconstructor> {
&mut self.reconstructor
}
/// Get the latency of the EDI controller, in milliseconds
pub fn get_latency(&self) -> u128 {
self.latency
}
}
impl<W: Write + 'static> Integration<W> {
/// Integrate a sequence of [DVS events](DvsEvent) into the ADΔER video model
#[allow(clippy::cast_sign_loss)]
pub fn integrate_dvs_events<
F: Fn(i64, i64) -> bool + Send + 'static + std::marker::Sync,
G: Fn(i64, i64) -> bool + Send + 'static + std::marker::Sync,
>(
&mut self,
video: &mut Video<W>,
dvs_events: &Vec<DvsEvent>,
frame_timestamp: i64,
event_check_1: F,
frame_timestamp_2: Option<i64>,
event_check_2: G,
) -> Result<(), CodecError> {
// TODO: not fixed 4 chunks?
let mut dvs_chunks: [Vec<DvsEvent>; 4] = [
Vec::with_capacity(100_000),
Vec::with_capacity(100_000),
Vec::with_capacity(100_000),
Vec::with_capacity(100_000),
];
let mut chunk_idx;
for dvs_event in dvs_events {
chunk_idx = dvs_event.y() as usize / (video.state.plane.h_usize() / 4);
dvs_chunks[chunk_idx].push(*dvs_event);
}
let chunk_rows = video.state.chunk_rows;
// let px_per_chunk: usize =
// self.video.chunk_rows * self.video.width as usize * self.video.channels as usize;
let big_buffer: Vec<Vec<Event>> = video
.event_pixel_trees
.axis_chunks_iter_mut(Axis(0), chunk_rows)
.into_par_iter()
.zip(
self.dvs_last_ln_val
.axis_chunks_iter_mut(Axis(0), chunk_rows)
.into_par_iter()
.zip(
self.dvs_last_timestamps
.axis_chunks_iter_mut(Axis(0), chunk_rows)
.into_par_iter(),
),
)
.enumerate()
.map(
|(
chunk_idx,
(mut px_chunk, (mut dvs_last_ln_val_chunk, mut dvs_last_timestamps_chunk)),
)| {
let mut buffer: Vec<Event> = Vec::with_capacity(100_000);
for event in &dvs_chunks[chunk_idx] {
// Ignore events occuring during the deblurred frame's
// effective exposure time
if event_check_1(event.t(), frame_timestamp)
&& if let Some(frame_timestamp_2) = frame_timestamp_2 {
event_check_2(event.t(), frame_timestamp_2)
} else {
true
}
{
let px = &mut px_chunk
[[(event.y() as usize) % chunk_rows, event.x() as usize, 0]];
let base_val = px.base_val;
let last_val_ln = &mut dvs_last_ln_val_chunk
[[(event.y() as usize) % chunk_rows, event.x() as usize, 0]];
let last_val = (last_val_ln.exp() - 1.0) * 255.0;
// in microseconds (1 million per second)
let delta_t_micro = event.t()
- dvs_last_timestamps_chunk
[[event.y() as usize % chunk_rows, event.x() as usize, 0]];
if delta_t_micro == event.t() {
continue;
}
let ticks_per_micro = video.state.tps as f32 / 1e6;
let delta_t_ticks = delta_t_micro as f32 * ticks_per_micro;
if delta_t_ticks < 0.0 {
// Should get here only if the event has already been processed?
continue; // TODO: do better
}
// First, integrate the previous value enough to fill the time since then
let first_integration = ((last_val as Intensity32)
/ video.state.ref_time as f32
* delta_t_ticks)
.max(0.0);
let mut buffer_grew = false;
if px.need_to_pop_top {
buffer_grew = true;
buffer.push(px.pop_top_event(
first_integration,
Continuous,
video.state.ref_time,
));
}
let running_t_before = px.running_t;
px.integrate(
first_integration,
delta_t_ticks.into(),
Continuous,
video.state.delta_t_max,
video.state.ref_time,
video.state.c_thresh_pos,
);
let running_t_after = px.running_t;
debug_assert_eq!(
running_t_after,
running_t_before + delta_t_ticks as f64
);
if px.need_to_pop_top {
buffer_grew = true;
buffer.push(px.pop_top_event(
first_integration,
Continuous,
video.state.ref_time,
));
}
let running_t_after = px.running_t;
debug_assert_eq!(
running_t_after,
running_t_before + delta_t_ticks as f64
);
///////////////////////////////////////////////////////
// Then, integrate a tiny amount of the next intensity
// let mut frame_val = (base_val as f64);
// let mut lat_frame_val = (frame_val / 255.0).ln();
*last_val_ln += if event.on() { self.dvs_c } else { -self.dvs_c };
let mut frame_val = (last_val_ln.exp() - 1.0) * 255.0;
clamp_u8(&mut frame_val, last_val_ln);
let frame_val_u8 = frame_val as u8; // TODO: don't let this be lossy here
if frame_val_u8 < base_val.saturating_sub(video.state.c_thresh_neg)
|| frame_val_u8 > base_val.saturating_add(video.state.c_thresh_pos)
{
px.pop_best_events(&mut buffer, Continuous, video.state.ref_time);
px.base_val = frame_val_u8;
// If continuous mode and the D value needs to be different now
match px.set_d_for_continuous(
frame_val as Intensity32,
video.state.ref_time,
) {
None => {}
Some(event) => buffer.push(event),
};
}
let tmpp = dvs_last_timestamps_chunk
[[event.y() as usize % chunk_rows, event.x() as usize, 0]];
dvs_last_timestamps_chunk
[[event.y() as usize % chunk_rows, event.x() as usize, 0]] =
event.t();
debug_assert!(
dvs_last_timestamps_chunk
[[event.y() as usize % chunk_rows, event.x() as usize, 0]]
>= tmpp
);
}
}
buffer
},
)
.collect();
let db = match video.instantaneous_frame.data_bytes_mut() {
Ok(db) => db,
Err(_e) => return Err(CodecError::MalformedEncoder), // TODO: Wrong type of error
};
// TODO: split off into separate function
// TODO: When there's full support for various bit-depth sources, modify this accordingly
let practical_d_max =
fast_math::log2_raw(255.0 * (video.state.delta_t_max / video.state.ref_time) as f32);
db.iter_mut()
.zip(video.running_intensities.iter_mut())
.enumerate()
.for_each(|(idx, (val, running))| {
let y = idx / video.state.plane.area_wc();
let x = (idx % video.state.plane.area_wc()) / video.state.plane.c_usize();
let c = idx % video.state.plane.c_usize();
*val = match video.event_pixel_trees[[y, x, c]].arena[0].best_event {
Some(event) => u8::get_frame_value(
&event.into(),
SourceType::U8,
video.state.ref_time as DeltaT,
practical_d_max,
video.state.delta_t_max,
video.instantaneous_view_mode,
0.0, //TODO
),
None => *val,
};
*running = *val as i32;
});
for events in &big_buffer {
for (e1, e2) in events.iter().tuple_windows() {
video.encoder.ingest_event(*e1)?;
if e2.delta_t != e1.delta_t {
video.feature_test(e1);
}
}
}
if video.state.show_live {
show_display("instance", &video.instantaneous_frame, 1, video).unwrap();
}
Ok(())
}
#[allow(clippy::cast_possible_truncation)]
fn integrate_frame_gaps(&mut self, video: &mut Video<W>) -> Result<(), SourceError> {
let px_per_chunk: usize = video.state.chunk_rows * video.state.plane.area_wc();
let start_of_frame_timestamp = match self.start_of_frame_timestamp {
Some(t) => t,
None => return Err(SourceError::UninitializedData),
};
// Important: if framing the events simultaneously, then the chunk division must be
// exactly the same as it is for the framer
let big_buffer: Vec<Vec<Event>> = video
.event_pixel_trees
.axis_chunks_iter_mut(Axis(0), video.state.chunk_rows)
.into_par_iter()
.zip(
self.dvs_last_ln_val
.axis_chunks_iter_mut(Axis(0), video.state.chunk_rows)
.into_par_iter(),
)
.enumerate()
.map(|(chunk_idx, (mut chunk_px, mut chunk_ln_val))| {
let mut buffer: Vec<Event> = Vec::with_capacity(px_per_chunk);
let bump = Bump::new();
let base_val = bump.alloc(0);
let px_idx = bump.alloc(0);
let frame_val = bump.alloc(0);
for (chunk_px_idx, (px, last_val_ln)) in
chunk_px.iter_mut().zip(chunk_ln_val.iter_mut()).enumerate()
{
*px_idx = chunk_px_idx + px_per_chunk * chunk_idx;
let last_val = (last_val_ln.exp() - 1.0) * 255.0;
*base_val = px.base_val;
*frame_val = last_val as u8;
let ticks_per_micro = video.state.tps as f32 / 1e6;
let delta_t_micro = start_of_frame_timestamp
- self.dvs_last_timestamps[[px.coord.y as usize, px.coord.x as usize, 0]];
if delta_t_micro == start_of_frame_timestamp {
continue;
}
let delta_t_ticks = delta_t_micro as f32 * ticks_per_micro;
if delta_t_ticks <= 0.0 {
continue;
}
assert!(delta_t_ticks > 0.0);
// assert_eq!(
// self.end_of_frame_timestamp.unwrap()
// - self.start_of_frame_timestamp.unwrap(),
// (self.video.ref_time as f32 / ticks_per_micro as f32) as i64
// );
let integration = ((last_val / f64::from(video.state.ref_time))
* f64::from(delta_t_ticks))
.max(0.0);
assert!(integration >= 0.0);
integrate_for_px(
px,
base_val,
frame_val,
integration as f32,
delta_t_ticks,
&mut buffer,
&video.state,
);
}
buffer
})
.collect();
let db = match video.instantaneous_frame.data_bytes_mut() {
Ok(db) => db,
Err(e) => return Err(SourceError::OpencvError(e)),
};
// TODO: split off into separate function
// TODO: When there's full support for various bit-depth sources, modify this accordingly
let practical_d_max =
fast_math::log2_raw(255.0 * (video.state.delta_t_max / video.state.ref_time) as f32);
db.iter_mut()
.zip(video.running_intensities.iter_mut())
.enumerate()
.for_each(|(idx, (val, running))| {
let y = idx / video.state.plane.area_wc();
let x = (idx % video.state.plane.area_wc()) / video.state.plane.c_usize();
let c = idx % video.state.plane.c_usize();
*val = match video.event_pixel_trees[[y, x, c]].arena[0].best_event {
Some(event) => u8::get_frame_value(
&event.into(),
SourceType::U8,
video.state.ref_time as DeltaT,
practical_d_max,
video.state.delta_t_max,
video.instantaneous_view_mode,
0.0, //TODO
),
None => *val,
};
*running = *val as i32;
});
for events in &big_buffer {
for (e1, e2) in events.iter().tuple_windows() {
video.encoder.ingest_event(*e1)?;
if e2.delta_t != e1.delta_t {
video.feature_test(e1);
}
}
}
if video.state.show_live {
show_display("instance", &video.instantaneous_frame, 1, video)?;
}
Ok(())
}
}
impl<W: Write + 'static + std::marker::Send> Source<W> for Davis<W> {
fn consume(
&mut self,
view_interval: u32,
thread_pool: &ThreadPool,
) -> Result<Vec<Vec<Event>>, SourceError> {
// Attempting new method for integration without requiring a buffer. Could be implemented
// for framed source just as easily
// Keep running integration starting at D=log_2(current_frame) + 1
// --If exceeds 2^D, then store in the pixel object what that event would be.
// --Then keep track of two branches:
// ----1: continuing the integration for D + 1
// ----2: assume that event fired, and integrate for a new event
// ---------But this could branch too... some sort of binary tree of pixel objects?
// ---------if (1) fills up for the higher D, then delete (2) and
// create a new branch for (2)
let with_events = match self.mode {
TranscoderMode::Framed => false,
TranscoderMode::RawDavis | TranscoderMode::RawDvs => true,
};
let mut reconstructor_holder = None;
swap(&mut self.reconstructor, &mut reconstructor_holder);
let mut thread_pool_holder = None;
swap(&mut self.thread_pool_edi, &mut thread_pool_holder);
let mat_opt_handle = thread::spawn(move || {
get_next_image(
reconstructor_holder.unwrap(),
thread_pool_holder.unwrap(),
with_events,
)
});
let mut ret = Ok(vec![]);
if self.cached_mat_opt.is_some() {
let mut cached_mat_opt = None;
std::mem::swap(&mut cached_mat_opt, &mut self.cached_mat_opt);
match cached_mat_opt.unwrap() {
None => {
// We've reached the end of the input. Forcibly pop the last event from each pixel.
println!("Popping remaining events");
let px_per_chunk: usize =
self.video.state.chunk_rows * self.video.state.plane.area_wc();
let big_buffer: Vec<Vec<Event>> = self
.video
.event_pixel_trees
.axis_chunks_iter_mut(Axis(0), self.video.state.chunk_rows)
.into_par_iter()
.enumerate()
.map(|(_chunk_idx, mut chunk)| {
let mut buffer: Vec<Event> = Vec::with_capacity(px_per_chunk);
for (_, px) in chunk.iter_mut().enumerate() {
px.pop_best_events(
&mut buffer,
self.video.state.pixel_tree_mode,
self.video.state.ref_time,
);
}
buffer
})
.collect();
self.video.encoder.ingest_events_events(&big_buffer)?;
return Err(SourceError::NoData);
}
Some((
mat,
_opt_timestamp,
Some((c, events_before, events_after, img_start_ts, img_end_ts)),
opt_latency,
)) => {
// We get here if we're in raw mode (getting raw events from EDI, and also
// potentially deblurred frames)
// self.control_latency(opt_timestamp);
self.input_frame_scaled = mat;
self.integration.start_of_frame_timestamp = Some(img_start_ts);
self.integration.end_of_frame_timestamp = Some(img_end_ts);
if self.mode == TranscoderMode::RawDvs {
// assert!(events_before.is_empty());
self.integration.end_of_frame_timestamp = Some(img_start_ts + 1);
}
self.integration.dvs_c = c;
self.integration.dvs_events_before = Some(events_before);
self.integration.dvs_events_after = Some(events_after);
self.video.state.ref_time_divisor =
(img_end_ts - img_start_ts) as f64 / f64::from(self.video.state.ref_time);
if let Some(latency) = opt_latency {
self.latency = latency;
}
}
Some((mat, _, None, opt_latency)) => {
// We get here if we're in framed mode (just getting deblurred frames from EDI,
// including intermediate frames)
// self.control_latency(opt_timestamp);
self.input_frame_scaled = mat;
if let Some(latency) = opt_latency {
self.latency = latency;
}
} // Err(e) => return Err(SourceError::EdiError(e)),
}
let start_of_frame_timestamp = self.integration.start_of_frame_timestamp.unwrap_or(0);
let end_of_frame_timestamp = self
.integration
.end_of_frame_timestamp
.unwrap_or(self.video.state.ref_time.into());
if self.integration.temp_first_frame_start_timestamp == 0 {
self.integration.temp_first_frame_start_timestamp =
self.integration.start_of_frame_timestamp.unwrap_or(0);
}
if with_events {
if self.video.state.in_interval_count == 0 {
/* If at the very beginning of the video, then we need to initialize the
last timestamps */
self.integration.dvs_last_timestamps.par_map_inplace(|ts| {
*ts = start_of_frame_timestamp;
});
} else {
let dvs_events_before = match &self.integration.dvs_events_before {
Some(events) => events.clone(),
None => return Err(SourceError::UninitializedData),
};
if let (Some(events), Some(end_of_last_timestamp)) = (
self.integration.dvs_events_last_after.clone(),
self.integration.end_of_last_frame_timestamp,
) {
self.integration.integrate_dvs_events(
&mut self.video,
&events,
start_of_frame_timestamp,
check_dvs_before,
if self.mode == TranscoderMode::RawDvs {
None
} else {
Some(end_of_last_timestamp)
},
check_dvs_after,
)?;
}
self.integration.integrate_dvs_events(
&mut self.video,
&dvs_events_before,
start_of_frame_timestamp,
check_dvs_before,
None,
check_dvs_before,
)?;
for px in &self.video.event_pixel_trees {
let a = px.running_t as i64;
let b = start_of_frame_timestamp
- self.integration.temp_first_frame_start_timestamp;
debug_assert!(a <= b);
debug_assert!(a <= start_of_frame_timestamp);
}
self.integration.integrate_frame_gaps(&mut self.video)?;
for px in &self.video.event_pixel_trees {
let a = px.running_t as i64;
let b = start_of_frame_timestamp
- self.integration.temp_first_frame_start_timestamp;
debug_assert!(a <= b);
debug_assert!(a > b - 1000);
}
}
}
if self.input_frame_scaled.empty() {
return Err(BufferEmpty);
}
match self
.input_frame_scaled
.convert_to(&mut self.image_8u, CV_8U, 255.0, 0.0)
{
Ok(_) => {}
Err(e) => {
return Err(SourceError::OpencvError(e));
}
}
// While `input_frame_scaled` may not be continuous (which would cause problems with
// iterating over the pixels), cloning it ensures that it is made continuous.
// https://stackoverflow.com/questions/33665241/is-opencv-matrix-data-guaranteed-to-be-continuous
let mut tmp = self.image_8u.clone();
let mat_integration_time = match self.mode {
TranscoderMode::Framed => self.video.state.ref_time as f32,
TranscoderMode::RawDavis => {
(end_of_frame_timestamp - start_of_frame_timestamp) as f32
}
TranscoderMode::RawDvs => {
// TODO: Note how c is fixed here, since we don't have a mechanism for determining
// its value
self.integration.dvs_c = 0.15;
match tmp.data_bytes_mut() {
Ok(bytes) => {
for byte in bytes {
*byte = 0;
}
}
Err(e) => {
return Err(SourceError::OpencvError(e));
}
}
0.0
}
};
ret = thread_pool.install(|| {
self.video
.integrate_matrix(tmp, mat_integration_time, view_interval)
});
// for px in &self.video.event_pixel_trees {
// let a = px.running_t as i64;
// let b =
// start_of_frame_timestamp - self.integration.temp_first_frame_start_timestamp;
// assert!(a >= b);
// let c = end_of_frame_timestamp - self.integration.temp_first_frame_start_timestamp;
// assert_eq!(a, c);
// }
#[allow(clippy::cast_possible_wrap, clippy::cast_possible_truncation)]
for (idx, val) in self.integration.dvs_last_ln_val.iter_mut().enumerate() {
let px = match
// SAFETY:
// `dvs_last_ln_val` is the same size as `input_frame_scaled`
unsafe {
self.input_frame_scaled.at_unchecked::<f64>(idx as i32)
} {
Ok(px) => px,
Err(e) => {
return Err(SourceError::OpencvError(e));
}
};
match self.mode {
TranscoderMode::RawDavis | TranscoderMode::Framed => {
*val = px.ln_1p();
}
TranscoderMode::RawDvs => {
*val = 0.5_f64.ln_1p();
}
}
}
if with_events {
// let dvs_events_after = match &self.integration.dvs_events_after {
// Some(events) => events.clone(),
// None => return Err(SourceError::UninitializedData),
// };
self.integration.dvs_events_last_after = self.integration.dvs_events_after.clone();
self.integration.end_of_last_frame_timestamp =
self.integration.end_of_frame_timestamp;
self.integration.dvs_last_timestamps.par_map_inplace(|ts| {
debug_assert!(*ts < end_of_frame_timestamp);
*ts = end_of_frame_timestamp;
});
// for px in &self.video.event_pixel_trees {
// let a = px.running_t as i64;
// let b = self.integration.dvs_last_timestamps
// [[px.coord.y as usize, px.coord.x as usize, 0]]
// - self.integration.temp_first_frame_start_timestamp;
// assert_eq!(a, b);
// }
}
}
// self.cached_mat_opt = Some(
match mat_opt_handle.join().unwrap() {
Ok(mat_opt) => {
self.reconstructor = Some(mat_opt.0);
self.thread_pool_edi = Some(mat_opt.1);
self.cached_mat_opt = Some(mat_opt.2);
}
Err(e) => {
return Err(SourceError::EdiError(e));
}
}
ret
}
fn get_video_mut(&mut self) -> &mut Video<W> {
&mut self.video
}
fn get_video_ref(&self) -> &Video<W> {
&self.video
}
fn get_video(self) -> Video<W> {
self.video
}
}
impl<W: Write + 'static> VideoBuilder<W> for Davis<W> {
fn contrast_thresholds(mut self, c_thresh_pos: u8, _c_thresh_neg: u8) -> Self {
self.video = self.video.c_thresh_pos(c_thresh_pos);
// self.video = self.video.c_thresh_neg(c_thresh_neg);
self
}
fn c_thresh_pos(mut self, c_thresh_pos: u8) -> Self {
self.video = self.video.c_thresh_pos(c_thresh_pos);
self
}
fn c_thresh_neg(self, _c_thresh_neg: u8) -> Self {
// self.video = self.video.c_thresh_neg(c_thresh_neg);
self
}
fn chunk_rows(mut self, chunk_rows: usize) -> Self {
self.video = self.video.chunk_rows(chunk_rows);
self
}
fn time_parameters(
mut self,
tps: DeltaT,
ref_time: DeltaT,
delta_t_max: DeltaT,
time_mode: Option<TimeMode>,
) -> Result<Self, SourceError> {
self = self.time_mode(time_mode.unwrap_or_default());
self.video = self
.video
.time_parameters(tps, ref_time, delta_t_max, time_mode)?;
Ok(self)
}
fn write_out(
mut self,
source_camera: SourceCamera,
time_mode: TimeMode,
encoder_type: EncoderType,
write: W,
) -> Result<Box<Self>, SourceError> {
self.video =
self.video
.write_out(Some(source_camera), Some(time_mode), encoder_type, write)?;
Ok(Box::new(self))
}
fn show_display(mut self, show_display: bool) -> Self {
self.video = self.video.show_display(show_display);
self
}
fn detect_features(mut self, detect_features: bool) -> Self {
self.video = self.video.detect_features(detect_features);
self
}
}
fn check_dvs_before(dvs_event_t: i64, timestamp_before: i64) -> bool {
dvs_event_t < timestamp_before
}
fn check_dvs_after(dvs_event_t: i64, timestamp_after: i64) -> bool {
dvs_event_t > timestamp_after
}
fn clamp_u8(frame_val: &mut f64, last_val_ln: &mut f64) {
if *frame_val <= 0.0 {
*frame_val = 0.0;
*last_val_ln = 0.0; // = 0.0_f64.ln_1p();
} else if *frame_val > 255.0 {
*frame_val = 255.0;
*last_val_ln = 255.0_f64.ln_1p();
}
}
/// Get the next APS image from the video source.
/// Returns a tuple of the image, the timestamp of the image, the timestamp of the end of the
/// frame, and the events occurring during the interval.
/// # Arguments
/// * `with_events` - Whether to return events along with the image
/// * `thread_pool` - The thread pool to use for parallelization
/// # Errors
/// * `ReconstructionError` - Some error in `davis-edi-rs`
pub fn get_next_image(
mut reconstructor: Reconstructor,
thread_pool: ThreadPool,
with_events: bool,
) -> Result<(Reconstructor, ThreadPool, Option<IterVal>), ReconstructionError> {
let res = thread_pool.install(|| async {
match reconstructor.next(with_events).await {
None => {
println!("\nFinished!");
Ok(None)
}
Some(res) => match res {
Ok(a) => Ok(Some(a)),
Err(e) => Err(e),
},
}
});
let res = futures::executor::block_on(res);
match res {
Ok(a) => Ok((reconstructor, thread_pool, a)),
Err(e) => Err(e),
}
}