1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/*
Appellation: grad <mod>
Contrib: FL03 <jo3mccain@icloud.com>
*/
use crate::actions::grad::GradStore;
use crate::prelude::{Scalar, TensorExpr, TensorId, TensorResult};
use crate::TensorBase;
use acme::prelude::{BinaryOp, Store, UnaryOp};
pub(crate) type Visited<K = TensorId> = std::collections::HashMap<K, bool>;
macro_rules! entry {
($ctx:expr, $entry:expr) => {
entry!($ctx, $entry, $entry.zeros_like())
};
($ctx:expr, $entry:expr, $default:expr) => {
$ctx.entry($entry.id()).or_insert($default)
};
}
impl<T> TensorBase<T>
where
T: Scalar,
{
/// [toposort](TensorBase::toposort) is a utilitarian functions that returns a topologically sorted list of nodes.
fn toposort(&self, reverse: bool) -> Vec<&TensorBase<T>> {
// Here, the sorted nodes are passed as an owned value rather than as a mutable reference to workaround some lifetime limitations.
fn walk<'a, T>(
scope: &'a TensorBase<T>,
nodes: Vec<&'a TensorBase<T>>,
visited: &mut Visited<TensorId>,
) -> (bool, Vec<&'a TensorBase<T>>) {
if let Some(&tg) = visited.get(&scope.id()) {
return (tg, nodes);
}
// track the gradient of the current node
let mut track = false;
// recursively call on the children nodes
let mut nodes = if scope.is_variable() {
// Do not call recursively on the "leaf" nodes.
track = true;
nodes
} else if let Some(op) = scope.op().op() {
match op {
TensorExpr::Binary(lhs, rhs, _kind) => {
let (tg, nodes) = walk(lhs, nodes, visited);
track |= tg;
let (tg, nodes) = walk(rhs, nodes, visited);
track |= tg;
nodes
}
TensorExpr::Unary(a, _kind) => {
let (tg, nodes) = walk(a, nodes, visited);
track |= tg;
nodes
}
_ => nodes,
}
} else {
nodes
};
visited.insert(scope.id(), track);
if track {
nodes.push(scope);
}
(track, nodes)
}
// walk through the dag
let (_tg, mut nodes) = walk(self, Vec::new(), &mut Visited::new());
// reverse the nodes; if needed
if reverse {
nodes.reverse();
}
// return the sorted nodes
nodes
}
pub fn grad(&self) -> TensorResult<GradStore<T>> {
// get the sorted nodes
let sorted = self.toposort(true);
// initialize a new gradient store
let mut store = GradStore::new();
// insert the gradient w.r.t. the current node
store.insert(self.id(), self.ones_like());
for node in sorted.iter() {
if node.is_variable() {
continue;
}
// get the gradient of the node
let grad = store.remove(&node.id()).expect("Gradient not found");
// detach the gradient
let grad = grad.detach();
// handle the different types of operations
if let Some(op) = &*node.op {
match op {
TensorExpr::Binary(lhs, rhs, kind) => match kind {
BinaryOp::Add(_) => {
*entry!(store, lhs) += &grad;
*entry!(store, rhs) += &grad;
}
BinaryOp::Div(_) => {
*entry!(store, lhs) += &grad / rhs.as_ref();
*entry!(store, rhs) -=
&grad * lhs.as_ref() / (rhs.as_ref() * rhs.as_ref());
}
BinaryOp::Mul(_) => {
*entry!(store, lhs) += &grad * rhs.as_ref();
*entry!(store, rhs) += &grad * lhs.as_ref();
}
BinaryOp::Sub(_) => {
*entry!(store, lhs) += &grad;
*entry!(store, rhs) -= &grad;
}
_ => todo!(),
},
TensorExpr::BinaryScalar(lhs, rhs, kind) => match kind {
BinaryOp::Add(_) => {
*entry!(store, lhs) += &grad;
}
BinaryOp::Div(_) => {
*entry!(store, lhs) += &grad / *rhs;
}
BinaryOp::Mul(_) => {
*entry!(store, lhs) += &grad * *rhs;
}
BinaryOp::Pow => {
*entry!(store, lhs) += &grad * *rhs * lhs.pow(*rhs - T::one());
}
BinaryOp::Sub(_) => {
*entry!(store, lhs) += &grad;
}
_ => todo!(),
},
TensorExpr::Unary(val, kind) => match kind {
UnaryOp::Cos => {
*entry!(store, val) -= &grad * val.sin();
}
UnaryOp::Cosh => {
*entry!(store, val) += &grad * val.sinh();
}
UnaryOp::Exp => {
*entry!(store, val) += &grad * val.exp();
}
UnaryOp::Neg => {
*entry!(store, val) -= &grad;
}
UnaryOp::Sin => {
*entry!(store, val) += &grad * val.cos();
}
UnaryOp::Sinh => {
*entry!(store, val) += &grad * val.cosh();
}
UnaryOp::Sqrt => {
*entry!(store, val) +=
&grad / (val.clone().sqrt() * T::from(2).unwrap());
}
UnaryOp::Tan => {
*entry!(store, val) += &grad / val.clone().cos().sqr();
}
_ => todo!(),
},
_ => {}
}
}
}
Ok(store)
}
}