1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use std::{
    collections::{btree_map, BTreeMap},
    iter::FromIterator,
    error::Error,
};
use log::Level::{Debug, Trace};
use crate::{Multiplicity, ContextHandle, Contextual, NodeID, FiringSet, AcesError};

#[derive(Clone, Default, Debug)]
pub struct State {
    tokens: BTreeMap<NodeID, Multiplicity>,
}

impl State {
    pub fn from_trigger<S: AsRef<str>>(ctx: &ContextHandle, trigger_name: S) -> Self {
        let trigger_id = ctx.lock().unwrap().share_node_name(trigger_name);
        let tokens = BTreeMap::from_iter(Some((trigger_id, Multiplicity::one())));

        State { tokens }
    }

    pub fn clear(&mut self) {
        self.tokens.clear()
    }

    pub fn get(&self, node_id: NodeID) -> Multiplicity {
        self.tokens.get(&node_id).copied().unwrap_or_else(Multiplicity::zero)
    }

    pub fn set(&mut self, node_id: NodeID, num_tokens: Multiplicity) {
        match self.tokens.entry(node_id) {
            btree_map::Entry::Vacant(entry) => {
                if num_tokens.is_positive() {
                    entry.insert(num_tokens);
                }
            }
            btree_map::Entry::Occupied(mut entry) => {
                if num_tokens.is_positive() {
                    *entry.get_mut() = num_tokens;
                } else {
                    entry.remove();
                }
            }
        }
    }

    pub fn decrease(&mut self, node_id: NodeID, num_tokens: Multiplicity) -> Result<(), AcesError> {
        if num_tokens.is_positive() {
            if let btree_map::Entry::Occupied(mut entry) = self.tokens.entry(node_id) {
                let tokens_before = *entry.get_mut();

                if tokens_before.is_positive() {
                    if num_tokens.is_finite() {
                        if let Some(tokens_after) = tokens_before.checked_sub(num_tokens) {
                            *entry.get_mut() = tokens_after;
                        } else {
                            return Err(AcesError::StateUnderflow)
                        }
                    } else {
                        return Err(AcesError::LeakedInhibitor)
                    }
                } else if num_tokens.is_finite() {
                    return Err(AcesError::StateUnderflow)
                }
            } else {
                return Err(AcesError::StateUnderflow)
            }
        }

        Ok(())
    }

    pub fn increase(&mut self, node_id: NodeID, num_tokens: Multiplicity) -> Result<(), AcesError> {
        if num_tokens.is_positive() {
            match self.tokens.entry(node_id) {
                btree_map::Entry::Vacant(entry) => {
                    entry.insert(num_tokens);
                }
                btree_map::Entry::Occupied(mut entry) => {
                    let tokens_before = *entry.get_mut();

                    if tokens_before.is_zero() {
                        *entry.get_mut() = num_tokens;
                    } else if tokens_before.is_finite() {
                        if num_tokens.is_omega() {
                            *entry.get_mut() = num_tokens;
                        } else if let Some(tokens_after) = tokens_before.checked_add(num_tokens) {
                            if tokens_after.is_finite() {
                                *entry.get_mut() = tokens_after;
                            } else {
                                return Err(AcesError::StateOverflow)
                            }
                        } else {
                            return Err(AcesError::StateOverflow)
                        }
                    }
                }
            }
        }

        Ok(())
    }

    pub(crate) fn transition_debug<R: rand::RngCore>(
        &mut self,
        ctx: &ContextHandle,
        num_steps: usize,
        fset: &FiringSet,
        rng: &mut R,
    ) -> Result<Option<usize>, AcesError> {
        if log_enabled!(Debug) {
            if num_steps == 0 {
                debug!("Go from {}", self.with(ctx));
            } else if num_steps < 10 {
                debug!("Step {}  {}", num_steps, self.with(ctx));
            } else {
                debug!("Step {} {}", num_steps, self.with(ctx));
            }
        }

        let enabled_fcs = fset.get_enabled(ctx, self);

        if let Some(fc_id) = enabled_fcs.get_random(rng) {
            if log_enabled!(Trace) {
                let mut at_start = true;

                for fc in enabled_fcs.iter(fset) {
                    if at_start {
                        trace!("Enabled {}", fc.with(ctx));
                        at_start = false;
                    } else {
                        trace!("        {}", fc.with(ctx));
                    }
                }
            }

            fset.as_slice()[fc_id].fire(ctx, self)?;

            Ok(Some(fc_id))
        } else {
            Ok(None)
        }
    }

    /// Returns ID of the activated firing component taken from the
    /// given [`FiringSet`].
    pub fn transition<R: rand::RngCore>(
        &mut self,
        ctx: &ContextHandle,
        fset: &FiringSet,
        rng: &mut R,
    ) -> Result<Option<usize>, AcesError> {
        let enabled_fcs = fset.get_enabled(ctx, self);

        if let Some(fc_id) = enabled_fcs.get_random(rng) {
            fset.as_slice()[fc_id].fire(ctx, self)?;

            Ok(Some(fc_id))
        } else {
            Ok(None)
        }
    }
}

impl Contextual for State {
    fn format(&self, ctx: &ContextHandle) -> Result<String, Box<dyn Error>> {
        let mut result = String::new();
        let mut at_start = true;

        result.push('{');

        for (node_id, &num_tokens) in self.tokens.iter() {
            if num_tokens.is_positive() {
                if at_start {
                    at_start = false;
                } else {
                    result.push(',');
                }
                result.push_str(&format!(" {}: {}", node_id.format(ctx)?.as_str(), num_tokens));
            }
        }

        result.push_str(" }");

        Ok(result)
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum Semantics {
    Sequential,
    Parallel,
}

impl Default for Semantics {
    fn default() -> Self {
        Semantics::Sequential
    }
}