acap/lib.rs
1//! As Close As Possible — [nearest neighbor search] in Rust.
2//!
3//! # Overview
4//!
5//! The notion of distances between points is captured by the [`Proximity`] trait. Its
6//! [`distance()`] method returns a [`Distance`], from which the actual numerical distance may be
7//! retrieved with [`value()`]. These layers of abstraction allow `acap` to work generically with
8//! different distance functions over different types.
9//!
10//! There are no restrictions on the distances computed by a [`Proximity`]. For example, they don't
11//! have to be symmetric, subadditive, or even positive. Implementations that do have these
12//! desirable properties will additionally implement the [`Metric`] marker trait. This distinction
13//! allows `acap` to support a wide variety of useful metric and non-metric distances.
14//!
15//! As a concrete example, consider `Euclidean<[i32; 2]>`. The [`Euclidean`] wrapper equips any
16//! type that has [coordinates] with the [Euclidean distance] function as its [`Proximity`]
17//! implementation:
18//!
19//! use acap::distance::Proximity;
20//! use acap::euclid::Euclidean;
21//!
22//! let a = Euclidean([3, 4]);
23//! let b = Euclidean([7, 7]);
24//! assert_eq!(a.distance(&b), 5);
25//!
26//! In this case, `distance()` doesn't return a number directly; as an optimization, it returns a
27//! [`EuclideanDistance`] wrapper. This wrapper stores the squared value of the distance, to avoid
28//! computing square roots until absolutely necessary. Still, it transparently supports comparisons
29//! with numerical values:
30//!
31//! # use acap::distance::Proximity;
32//! # use acap::euclid::Euclidean;
33//! # let a = Euclidean([3, 4]);
34//! # let b = Euclidean([7, 7]);
35//! use acap::distance::Distance;
36//!
37//! let d = a.distance(&b);
38//! assert!(d > 4 && d < 6);
39//! assert_eq!(d, 5);
40//! assert_eq!(d.value(), 5.0f32);
41//!
42//! For finding the nearest neighbors to a point from a set of other points, the
43//! [`NearestNeighbors`] trait provides a uniform interface to [many different similarity search
44//! data structures]. One such structure is the [vantage-point tree], available in `acap` as
45//! [`VpTree`]:
46//!
47//! # use acap::euclid::Euclidean;
48//! use acap::vp::VpTree;
49//!
50//! let tree = VpTree::balanced(vec![
51//! Euclidean([3, 4]),
52//! Euclidean([5, 12]),
53//! Euclidean([8, 15]),
54//! Euclidean([7, 24]),
55//! ]);
56//!
57//! [`VpTree`] implements [`NearestNeighbors`], which has a [`nearest()`] method that returns an
58//! optional [`Neighbor`]. The [`Neighbor`] struct holds the actual neighbor it found, and the
59//! distance it was from the target:
60//!
61//! # use acap::euclid::Euclidean;
62//! # use acap::vp::VpTree;
63//! use acap::knn::NearestNeighbors;
64//!
65//! # let tree = VpTree::balanced(
66//! # vec![Euclidean([3, 4]), Euclidean([5, 12]), Euclidean([8, 15]), Euclidean([7, 24])]
67//! # );
68//! let nearest = tree.nearest(&[7, 7]).unwrap();
69//! assert_eq!(nearest.item, &Euclidean([3, 4]));
70//! assert_eq!(nearest.distance, 5);
71//!
72//! [`NearestNeighbors`] also provides the [`nearest_within()`], [`k_nearest()`], and
73//! [`k_nearest_within()`] methods which find up to `k` neighbors within a possible threshold.
74//!
75//! It can be expensive to compute nearest neighbors exactly, especially in high dimensions.
76//! For performance reasons, [`NearestNeighbors`] implementations are allowed to return approximate
77//! results. Many implementations have a speed/accuracy tradeoff which can be tuned. Those
78//! implementations which always return exact results will also implement the [`ExactNeighbors`]
79//! marker trait. For example, a [`VpTree`] will be exact when the [`Proximity`] function is a
80//! [`Metric`].
81//!
82//! # Examples
83//!
84//! ## Searching without owning
85//!
86//! Since [`Proximity`] has a blanket implementation for references, you can store references in a
87//! nearest neighbor index instead of having it hold the data itself:
88//!
89//! use acap::euclid::Euclidean;
90//! use acap::knn::NearestNeighbors;
91//! use acap::vp::VpTree;
92//!
93//! let points = vec![
94//! Euclidean([3, 4]),
95//! Euclidean([5, 12]),
96//! Euclidean([8, 15]),
97//! Euclidean([7, 24]),
98//! ];
99//!
100//! let tree = VpTree::balanced(points.iter());
101//!
102//! let nearest = tree.nearest(&&[7, 7]).unwrap();
103//! assert!(std::ptr::eq(*nearest.item, &points[0]));
104//!
105//! ## Custom distance functions
106//!
107//! See the [`Proximity`] documentation.
108//!
109//! [nearest neighbor search]: https://en.wikipedia.org/wiki/Nearest_neighbor_search
110//! [`distance()`]: distance::Proximity#tymethod.distance
111//! [`value()`]: distance::Distance#method.value
112//! [coordinates]: coords::Coordinates
113//! [Euclidean distance]: https://en.wikipedia.org/wiki/Euclidean_distance
114//! [`NearestNeighbors`]: knn::NearestNeighbors
115//! [many different similarity search data structures]: knn::NearestNeighbors#implementors
116//! [vantage-point tree]: https://en.wikipedia.org/wiki/Vantage-point_tree
117//! [`VpTree`]: vp::VpTree
118//! [`Neighbor`]: knn::Neighbor
119//! [`nearest()`]: knn::NearestNeighbors#method.nearest
120//! [`k_nearest()`]: knn::NearestNeighbors#method.k_nearest
121//! [`nearest_within()`]: knn::NearestNeighbors#method.nearest_within
122//! [`k_nearest_within()`]: knn::NearestNeighbors#method.k_nearest_within
123//! [`ExactNeighbors`]: knn::ExactNeighbors
124
125#![warn(rust_2018_idioms)]
126
127#![no_std]
128
129extern crate alloc;
130
131pub mod chebyshev;
132pub mod coords;
133pub mod cos;
134pub mod distance;
135pub mod euclid;
136pub mod exhaustive;
137pub mod hamming;
138pub mod kd;
139pub mod knn;
140pub mod lp;
141pub mod taxi;
142pub mod vp;
143
144mod util;
145
146pub use coords::Coordinates;
147pub use distance::{Distance, Metric, Proximity};
148pub use euclid::{euclidean_distance, Euclidean, EuclideanDistance};
149pub use knn::{ExactNeighbors, NearestNeighbors, Neighbor};