ac_library/
string.rs

1#![allow(clippy::many_single_char_names)]
2
3fn sa_naive<T: Ord>(s: &[T]) -> Vec<usize> {
4    let n = s.len();
5    let mut sa: Vec<usize> = (0..n).collect();
6    sa.sort_by(|&(mut l), &(mut r)| {
7        if l == r {
8            return std::cmp::Ordering::Equal;
9        }
10        while l < n && r < n {
11            if s[l] != s[r] {
12                return s[l].cmp(&s[r]);
13            }
14            l += 1;
15            r += 1;
16        }
17        if l == n {
18            std::cmp::Ordering::Less
19        } else {
20            std::cmp::Ordering::Greater
21        }
22    });
23    sa
24}
25
26fn sa_doubling(s: &[i32]) -> Vec<usize> {
27    let n = s.len();
28    let mut sa: Vec<usize> = (0..n).collect();
29    let mut rnk: Vec<i32> = s.to_vec();
30    let mut tmp = vec![0; n];
31    let mut k = 1;
32    while k < n {
33        let cmp = |&x: &usize, &y: &usize| {
34            if rnk[x] != rnk[y] {
35                return rnk[x].cmp(&rnk[y]);
36            }
37            let rx = if x + k < n { rnk[x + k] } else { -1 };
38            let ry = if y + k < n { rnk[y + k] } else { -1 };
39            rx.cmp(&ry)
40        };
41        sa.sort_by(cmp);
42        tmp[sa[0]] = 0;
43        for i in 1..n {
44            tmp[sa[i]] =
45                tmp[sa[i - 1]] + i32::from(cmp(&sa[i - 1], &sa[i]) == std::cmp::Ordering::Less);
46        }
47        std::mem::swap(&mut tmp, &mut rnk);
48        k *= 2;
49    }
50    sa
51}
52
53trait Threshold {
54    fn threshold_naive() -> usize;
55    fn threshold_doubling() -> usize;
56}
57
58enum DefaultThreshold {}
59impl Threshold for DefaultThreshold {
60    fn threshold_naive() -> usize {
61        10
62    }
63    fn threshold_doubling() -> usize {
64        40
65    }
66}
67
68#[allow(clippy::cognitive_complexity)]
69fn sa_is<T: Threshold>(s: &[usize], upper: usize) -> Vec<usize> {
70    let n = s.len();
71    match n {
72        0 => return vec![],
73        1 => return vec![0],
74        2 => return if s[0] < s[1] { vec![0, 1] } else { vec![1, 0] },
75        _ => (),
76    }
77    if n < T::threshold_naive() {
78        return sa_naive(s);
79    }
80    if n < T::threshold_doubling() {
81        let s: Vec<i32> = s.iter().map(|&x| x as i32).collect();
82        return sa_doubling(&s);
83    }
84    let mut sa = vec![0; n];
85    let mut ls = vec![false; n];
86    for i in (0..n - 1).rev() {
87        ls[i] = if s[i] == s[i + 1] {
88            ls[i + 1]
89        } else {
90            s[i] < s[i + 1]
91        };
92    }
93    let mut sum_l = vec![0; upper + 1];
94    let mut sum_s = vec![0; upper + 1];
95    for i in 0..n {
96        if !ls[i] {
97            sum_s[s[i]] += 1;
98        } else {
99            sum_l[s[i] + 1] += 1;
100        }
101    }
102    for i in 0..=upper {
103        sum_s[i] += sum_l[i];
104        if i < upper {
105            sum_l[i + 1] += sum_s[i];
106        }
107    }
108
109    // sa's origin is 1.
110    let induce = |sa: &mut [usize], lms: &[usize]| {
111        for elem in sa.iter_mut() {
112            *elem = 0;
113        }
114        let mut buf = sum_s.clone();
115        for &d in lms {
116            if d == n {
117                continue;
118            }
119            let old = buf[s[d]];
120            buf[s[d]] += 1;
121            sa[old] = d + 1;
122        }
123        buf.copy_from_slice(&sum_l);
124        let old = buf[s[n - 1]];
125        buf[s[n - 1]] += 1;
126        sa[old] = n;
127        for i in 0..n {
128            let v = sa[i];
129            if v >= 2 && !ls[v - 2] {
130                let old = buf[s[v - 2]];
131                buf[s[v - 2]] += 1;
132                sa[old] = v - 1;
133            }
134        }
135        buf.copy_from_slice(&sum_l);
136        for i in (0..n).rev() {
137            let v = sa[i];
138            if v >= 2 && ls[v - 2] {
139                buf[s[v - 2] + 1] -= 1;
140                sa[buf[s[v - 2] + 1]] = v - 1;
141            }
142        }
143    };
144    // origin: 1
145    let mut lms_map = vec![0; n + 1];
146    let mut m = 0;
147    for i in 1..n {
148        if !ls[i - 1] && ls[i] {
149            lms_map[i] = m + 1;
150            m += 1;
151        }
152    }
153    let mut lms = Vec::with_capacity(m);
154    for i in 1..n {
155        if !ls[i - 1] && ls[i] {
156            lms.push(i);
157        }
158    }
159    assert_eq!(lms.len(), m);
160    induce(&mut sa, &lms);
161
162    if m > 0 {
163        let mut sorted_lms = Vec::with_capacity(m);
164        for &v in &sa {
165            if lms_map[v - 1] != 0 {
166                sorted_lms.push(v - 1);
167            }
168        }
169        let mut rec_s = vec![0; m];
170        let mut rec_upper = 0;
171        rec_s[lms_map[sorted_lms[0]] - 1] = 0;
172        for i in 1..m {
173            let mut l = sorted_lms[i - 1];
174            let mut r = sorted_lms[i];
175            let end_l = if lms_map[l] < m { lms[lms_map[l]] } else { n };
176            let end_r = if lms_map[r] < m { lms[lms_map[r]] } else { n };
177            let same = if end_l - l != end_r - r {
178                false
179            } else {
180                while l < end_l {
181                    if s[l] != s[r] {
182                        break;
183                    }
184                    l += 1;
185                    r += 1;
186                }
187                l != n && s[l] == s[r]
188            };
189            if !same {
190                rec_upper += 1;
191            }
192            rec_s[lms_map[sorted_lms[i]] - 1] = rec_upper;
193        }
194
195        let rec_sa = sa_is::<T>(&rec_s, rec_upper);
196        for i in 0..m {
197            sorted_lms[i] = lms[rec_sa[i]];
198        }
199        induce(&mut sa, &mut sorted_lms);
200    }
201    for elem in sa.iter_mut() {
202        *elem -= 1;
203    }
204    sa
205}
206
207fn sa_is_i32<T: Threshold>(s: &[i32], upper: i32) -> Vec<usize> {
208    let s: Vec<usize> = s.iter().map(|&x| x as usize).collect();
209    sa_is::<T>(&s, upper as usize)
210}
211
212pub fn suffix_array_manual(s: &[i32], upper: i32) -> Vec<usize> {
213    assert!(upper >= 0);
214    for &elem in s {
215        assert!(0 <= elem && elem <= upper);
216    }
217    sa_is_i32::<DefaultThreshold>(s, upper)
218}
219
220pub fn suffix_array_arbitrary<T: Ord>(s: &[T]) -> Vec<usize> {
221    let n = s.len();
222    let mut idx: Vec<usize> = (0..n).collect();
223    idx.sort_by_key(|&i| &s[i]);
224    let mut s2 = vec![0; n];
225    let mut now = 0;
226    for i in 0..n {
227        if i > 0 && s[idx[i - 1]] != s[idx[i]] {
228            now += 1;
229        }
230        s2[idx[i]] = now;
231    }
232    sa_is_i32::<DefaultThreshold>(&s2, now)
233}
234
235pub fn suffix_array(s: &str) -> Vec<usize> {
236    let s2: Vec<usize> = s.bytes().map(|x| x as usize).collect();
237    sa_is::<DefaultThreshold>(&s2, 255)
238}
239
240// Reference:
241// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
242// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
243// Applications
244pub fn lcp_array_arbitrary<T: Ord>(s: &[T], sa: &[usize]) -> Vec<usize> {
245    assert!(s.len() == sa.len());
246    let n = s.len();
247    assert!(n >= 1);
248    let mut rnk = vec![0; n];
249    for i in 0..n {
250        assert!(sa[i] < n);
251        rnk[sa[i]] = i;
252    }
253    let mut lcp = vec![0; n - 1];
254    let mut h: usize = 0;
255    for i in 0..n - 1 {
256        h = h.saturating_sub(1);
257        if rnk[i] == 0 {
258            continue;
259        }
260        let j = sa[rnk[i] - 1];
261        while j + h < n && i + h < n {
262            if s[j + h] != s[i + h] {
263                break;
264            }
265            h += 1;
266        }
267        lcp[rnk[i] - 1] = h;
268    }
269    lcp
270}
271
272pub fn lcp_array(s: &str, sa: &[usize]) -> Vec<usize> {
273    let s: &[u8] = s.as_bytes();
274    lcp_array_arbitrary(s, sa)
275}
276
277// Reference:
278// D. Gusfield,
279// Algorithms on Strings, Trees, and Sequences: Computer Science and
280// Computational Biology
281pub fn z_algorithm_arbitrary<T: Ord>(s: &[T]) -> Vec<usize> {
282    let n = s.len();
283    if n == 0 {
284        return vec![];
285    }
286    let mut z = vec![0; n];
287    z[0] = 0;
288    let mut j = 0;
289    for i in 1..n {
290        let mut k = if j + z[j] <= i {
291            0
292        } else {
293            std::cmp::min(j + z[j] - i, z[i - j])
294        };
295        while i + k < n && s[k] == s[i + k] {
296            k += 1;
297        }
298        z[i] = k;
299        if j + z[j] < i + z[i] {
300            j = i;
301        }
302    }
303    z[0] = n;
304    z
305}
306
307pub fn z_algorithm(s: &str) -> Vec<usize> {
308    let s: &[u8] = s.as_bytes();
309    z_algorithm_arbitrary(s)
310}
311
312#[cfg(test)]
313mod tests {
314    use super::*;
315
316    enum ZeroThreshold {}
317    impl Threshold for ZeroThreshold {
318        fn threshold_naive() -> usize {
319            0
320        }
321        fn threshold_doubling() -> usize {
322            0
323        }
324    }
325
326    fn verify_all(str: &str, expected_array: &[usize]) {
327        let array: Vec<i32> = str.bytes().map(|x| x as i32).collect();
328        let sa = sa_doubling(&array);
329        assert_eq!(sa, expected_array);
330        let sa_naive = sa_naive(&array);
331        assert_eq!(sa_naive, expected_array);
332        let sa_is = sa_is_i32::<ZeroThreshold>(&array, 255);
333        assert_eq!(sa_is, expected_array);
334
335        let sa_str = suffix_array(str);
336        assert_eq!(sa_str, expected_array);
337    }
338
339    #[test]
340    fn test_sa_0() {
341        let array = vec![0, 1, 2, 3, 4];
342        let sa = sa_doubling(&array);
343        assert_eq!(sa, vec![0, 1, 2, 3, 4]);
344    }
345
346    #[test]
347    fn test_sa_1() {
348        let str = "abracadabra";
349        verify_all(str, &[10, 7, 0, 3, 5, 8, 1, 4, 6, 9, 2]);
350    }
351
352    #[test]
353    fn test_sa_2() {
354        let str = "mmiissiissiippii"; // an example taken from https://mametter.hatenablog.com/entry/20180130/p1
355        verify_all(str, &[15, 14, 10, 6, 2, 11, 7, 3, 1, 0, 13, 12, 9, 5, 8, 4]);
356    }
357
358    #[test]
359    fn test_lcp_0() {
360        let str = "abracadabra";
361        let sa = suffix_array(str);
362        let lcp = lcp_array(str, &sa);
363        assert_eq!(lcp, &[1, 4, 1, 1, 0, 3, 0, 0, 0, 2]);
364    }
365
366    #[test]
367    fn test_lcp_1() {
368        let str = "mmiissiissiippii"; // an example taken from https://mametter.hatenablog.com/entry/20180130/p1
369        let sa = suffix_array(str);
370        let lcp = lcp_array(str, &sa);
371        assert_eq!(lcp, &[1, 2, 2, 6, 1, 1, 5, 0, 1, 0, 1, 0, 3, 1, 4]);
372    }
373
374    #[test]
375    fn test_z_0() {
376        let str = "abracadabra";
377        let lcp = z_algorithm(str);
378        assert_eq!(lcp, &[11, 0, 0, 1, 0, 1, 0, 4, 0, 0, 1]);
379    }
380
381    #[test]
382    fn test_z_1() {
383        let str = "ababababa";
384        let lcp = z_algorithm(str);
385        assert_eq!(lcp, &[9, 0, 7, 0, 5, 0, 3, 0, 1]);
386    }
387}