1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
#![allow(warnings)]
pub mod basis;
pub mod conductivity;
pub mod surfgreen;
pub mod geometry;
pub mod sparse_model;
pub mod ndarray_lapack;
pub mod generics;
use gnuplot::Major;
use num_complex::Complex;
use num_traits::identities::Zero;
use ndarray::linalg::kron;
use ndarray::*;
use ndarray::prelude::*;
use ndarray::concatenate;
use ndarray_linalg::*;
use std::f64::consts::PI;
use ndarray_linalg::{Eigh, UPLO};
use ndarray_linalg::conjugate;
use rayon::prelude::*;
use std::io::Write;
use std::fs::File;
use std::ops::AddAssign;
use std::ops::MulAssign;
use std::ops::Deref;
use std::time::Instant;
use crate::generics::generics::usefloat;
/// This cate is used to perform various calculations on the TB model, currently including:
///
/// - Calculate the band structure
///
/// - Expand the cell and calculate the surface state
///
/// - Calculate the first-order anomalous Hall conductivity and spin Hall conductivity
///

#[derive(Clone,Debug)]
pub struct Model_sparse<hop_element>{
    /// - The real space dimension of the model.
    pub dim_r:usize,
    /// - The number of orbitals in the model.
    pub norb:usize,
    /// - The number of states in the model. If spin is enabled, nsta=norb$\times$2
    pub nsta:usize,
    /// - The number of atoms in the model. The atom and atom_list at the back are used to store the positions of the atoms, and the number of orbitals corresponding to each atom.
    pub natom:usize,
    /// - Whether the model has spin enabled. If enabled, spin=true
    pub spin:bool,
    /// - The lattice vector of the model, a dim_r$\times$dim_r matrix, the axis0 direction stores a 1$\times$dim_r lattice vector.
    pub lat:Array2::<f64>,
    /// - The position of the orbitals in the model. We use fractional coordinates uniformly.
    pub orb:Array2::<f64>,
    /// - The position of the atoms in the model, also in fractional coordinates.
    pub atom:Array2::<f64>,
    /// - The number of orbitals in the atoms, in the same order as the atom positions.
    pub atom_list:Vec<usize>,
    /// - The Hamiltonian of the model, $\bra{m0}\hat H\ket{nR}$, a three-dimensional complex tensor of size n_R$\times$nsta$\times$ nsta, where the first nsta*nsta matrix corresponds to hopping within the unit cell, i.e. <m0|H|n0>, and the subsequent matrices correspond to hopping within hamR.
    pub ham:Vec<hop_element>,
}
#[derive(Clone,Debug)]
pub struct Model{
    /// - The real space dimension of the model.
    pub dim_r:usize,
    /// - The number of orbitals in the model.
    pub norb:usize,
    /// - The number of states in the model. If spin is enabled, nsta=norb$\times$2
    pub nsta:usize,
    /// - The number of atoms in the model. The atom and atom_list at the back are used to store the positions of the atoms, and the number of orbitals corresponding to each atom.
    pub natom:usize,
    /// - Whether the model has spin enabled. If enabled, spin=true
    pub spin:bool,
    /// - The lattice vector of the model, a dim_r$\times$dim_r matrix, the axis0 direction stores a 1$\times$dim_r lattice vector.
    pub lat:Array2::<f64>,
    /// - The position of the orbitals in the model. We use fractional coordinates uniformly.
    pub orb:Array2::<f64>,
    /// - The position of the atoms in the model, also in fractional coordinates.
    pub atom:Array2::<f64>,
    /// - The number of orbitals in the atoms, in the same order as the atom positions.
    pub atom_list:Vec<usize>,
    /// - The Hamiltonian of the model, $\bra{m0}\hat H\ket{nR}$, a three-dimensional complex tensor of size n_R$\times$nsta$\times$ nsta, where the first nsta*nsta matrix corresponds to hopping within the unit cell, i.e. <m0|H|n0>, and the subsequent matrices correspond to hopping within hamR.
    pub ham:Array3::<Complex<f64>>,
    /// - The distance between the unit cell hoppings, i.e. R in $\bra{m0}\hat H\ket{nR}$.
    pub hamR:Array2::<isize>,
    /// - The position matrix, i.e. $\bra{m0}\hat{\bm r}\ket{nR}$.
    pub rmatrix:Array4::<Complex<f64>>,
}

#[derive(Clone,Debug)]
pub struct surf_Green{
    /// - The real space dimension of the model.
    pub dim_r:usize,
    /// - The number of orbitals in the model.
    pub norb:usize,
    /// - The number of states in the model. If spin is enabled, nsta=norb$\times$2
    pub nsta:usize,
    /// - The number of atoms in the model. The atom and atom_list at the back are used to store the positions of the atoms, and the number of orbitals corresponding to each atom.
    pub natom:usize,
    /// - Whether the model has spin enabled. If enabled, spin=true
    pub spin:bool,
    /// - The lattice vector of the model, a dim_r$\times$dim_r matrix, the axis0 direction stores a 1$\times$dim_r lattice vector.
    pub lat:Array2::<f64>,
    /// - The position of the orbitals in the model. We use fractional coordinates uniformly.
    pub orb:Array2::<f64>,
    /// - The position of the atoms in the model, also in fractional coordinates.
    pub atom:Array2::<f64>,
    /// - The number of orbitals in the atoms, in the same order as the atom positions.
    pub atom_list:Vec<usize>,
    /// - The bulk Hamiltonian of the model, $\bra{m0}\hat H\ket{nR}$, a three-dimensional complex tensor of size n_R$\times$nsta$\times$ nsta, where the first nsta*nsta matrix corresponds to hopping within the unit cell, i.e. <m0|H|n0>, and the subsequent matrices correspond to hopping within hamR.
    pub eta:f64,
    pub ham_bulk:Array3::<Complex<f64>>,
    /// - The distance between the unit cell hoppings, i.e. R in $\bra{m0}\hat H\ket{nR}$.
    pub ham_bulkR:Array2::<isize>,
    /// - The bulk Hamiltonian of the model, $\bra{m0}\hat H\ket{nR}$, a three-dimensional complex tensor of size n_R$\times$nsta$\times$ nsta, where the first nsta*nsta matrix corresponds to hopping within the unit cell, i.e. <m0|H|n0>, and the subsequent matrices correspond to hopping within hamR.
    pub ham_hop:Array3::<Complex<f64>>,
    pub ham_hopR:Array2::<isize>,
}



#[inline(always)]
fn remove_row<T: Copy>(array: Array2<T>, row_to_remove: usize) -> Array2<T> {
    let indices: Vec<_> = (0..array.nrows()).filter(|&r| r != row_to_remove).collect();
    array.select(Axis(0), &indices)
}
#[inline(always)]
fn remove_col<T: Copy>(array: Array2<T>, col_to_remove: usize) -> Array2<T> {
    let indices: Vec<_> = (0..array.ncols()).filter(|&r| r != col_to_remove).collect();
    array.select(Axis(1), &indices)
}
#[allow(non_snake_case)]
#[inline(always)]
pub fn gen_kmesh<T>(k_mesh:&Array1::<usize>)->Array2::<T>
    where T:usefloat+ std::ops::Div<Output = T>,
          {
    let dim:usize=k_mesh.len();
    let mut nk:usize=1;
    for i in 0..dim{
        nk*=k_mesh[[i]];
    }
    fn gen_kmesh_arr<T>(k_mesh:&Array1::<usize>,r0:usize,mut usek:Array1::<T>)->Array2::<T>
        where T:usefloat+ std::ops::Div<Output = T>,
        {
        let dim:usize=k_mesh.len();
        let mut kvec=Array2::<T>::zeros((0,dim));
        if r0==0{
            for i in 0..(k_mesh[[r0]]){
               let mut usek=Array1::<T>::zeros(dim);
               usek[[r0]]=T::from(i)/T::from(k_mesh[[r0]]);
               let k0:Array2::<T>=gen_kmesh_arr(&k_mesh,r0+1,usek);
               kvec.append(Axis(0),k0.view()).unwrap();
            }
            return kvec
        }else if r0<k_mesh.len()-1{
            for i in 0..(k_mesh[[r0]]){
               let mut kk=usek.clone();
               kk[[r0]]=T::from(i)/T::from(k_mesh[[r0]]);
               let k0:Array2::<T>=gen_kmesh_arr(&k_mesh,r0+1,kk);
               kvec.append(Axis(0),k0.view()).unwrap();
            }
            return kvec
        }else{
            for i in 0..(k_mesh[[r0]]){
               usek[[r0]]=T::from(i)/T::from(k_mesh[[r0]]);
               kvec.push_row(usek.view()).unwrap();
            }
            return kvec
        }
    }
    let mut usek=Array1::<T>::zeros(dim);
    gen_kmesh_arr(&k_mesh,0,usek)
}
#[allow(non_snake_case)]
#[inline(always)]
pub fn gen_krange<T>(k_mesh:&Array1::<usize>)->Array3::<T>
        where T:usefloat+ std::ops::Div<Output = T>,
{
    let dim_r=k_mesh.len();
    let mut k_range=Array3::<T>::zeros((0,dim_r,2));
    match dim_r{
        1=>{
            for i in 0..k_mesh[[0]]{
                let mut k=Array2::<T>::zeros((dim_r,2));
                k[[0,0]]=T::from(i)/T::from(k_mesh[[0]]);
                k[[0,1]]=T::from(i+1)/T::from(k_mesh[[0]]);
                k_range.push(Axis(0),k.view()).unwrap();
            }
        },
        2=>{
            for i in 0..k_mesh[[0]]{
                for j in 0..k_mesh[[1]]{
                    let mut k=Array2::<T>::zeros((dim_r,2));
                    k[[0,0]]=T::from(i)/T::from(k_mesh[[0]]);
                    k[[0,1]]=T::from(i+1)/T::from(k_mesh[[0]]);
                    k[[1,0]]=T::from(j)/T::from(k_mesh[[1]]);
                    k[[1,1]]=T::from(j+1)/T::from(k_mesh[[1]]);
                    k_range.push(Axis(0),k.view()).unwrap();
                }
            }
        },
        3=>{
            for i in 0..k_mesh[[0]]{
                for j in 0..k_mesh[[1]]{
                    for ks in 0..k_mesh[[2]]{
                        let mut k=Array2::<T>::zeros((dim_r,2));
                        k[[0,0]]=T::from(i)/T::from(k_mesh[[0]]);
                        k[[0,1]]=T::from(i+1)/T::from(k_mesh[[0]]);
                        k[[1,0]]=T::from(j)/T::from(k_mesh[[1]]);
                        k[[1,1]]=T::from(j+1)/T::from(k_mesh[[1]]);
                        k[[2,0]]=T::from(ks)/T::from(k_mesh[[2]]);
                        k[[2,1]]=T::from(ks+1)/T::from(k_mesh[[2]]);
                        k_range.push(Axis(0),k.view()).unwrap();
                    }
                }
            }
        },
        _=>{
            panic!("Wrong, the dim should be 1,2 or 3, but you give {}",dim_r);
        }
    };
    k_range
}

#[allow(non_snake_case)]
#[inline(always)]
pub fn comm<A,B,T>(A: &ArrayBase<A, Ix2>, B: &ArrayBase<B, Ix2>) -> Array2<T>
where  
    A: Data<Elem = T>,
    B: Data<Elem = T>,
    T: LinalgScalar, // 约束条件:T 必须实现 LinalgScalar trait
{
    //! 做 $\\\{A,B\\\}$ 反对易操作
    A.dot(B)-B.dot(A)
}
#[allow(non_snake_case)]
#[inline(always)]
pub fn anti_comm<A,B,T>(A: &ArrayBase<A, Ix2>, B: &ArrayBase<B, Ix2>) -> Array2<T>
where  
    A: Data<Elem = T>,
    B: Data<Elem = T>,
    T: LinalgScalar, // 约束条件:T 必须实现 LinalgScalar trait
{
    //! 做 $\\\{A,B\\\}$ 反对易操作
    A.dot(B)+B.dot(A)
}
pub fn draw_heatmap<A:Data<Elem=f64>>(data: &ArrayBase<A, Ix2>,name:&str) {
    //!这个函数是用来画热图的, 给定一个二维矩阵, 会输出一个像素图片
    use gnuplot::{Figure, AxesCommon, AutoOption::Fix,HOT,RAINBOW};
    let mut fg = Figure::new();
    let (height,width):(usize,usize) = (data.shape()[0],data.shape()[1]);
    let mut heatmap_data = vec![];

    for j in 0..width {
        for i in 0..height {
            heatmap_data.push(data[(i, j)]);
        }
    }
    let axes = fg.axes2d();
    axes.set_title("Heatmap", &[]);
    axes.set_cb_label("Values", &[]);
    axes.set_palette(RAINBOW);
    axes.image(heatmap_data.iter(), width, height,None, &[]);
    let size=data.shape();
    let axes=axes.set_x_range(Fix(0.0), Fix((size[0]-1) as f64));
    let axes=axes.set_y_range(Fix(0.0), Fix((size[1]-1) as f64));
    let axes=axes.set_aspect_ratio(Fix(1.0));
    fg.set_terminal("pdfcairo",name);
    fg.show().expect("Unable to draw heatmap");
}


pub fn  write_txt<T:usefloat>(data:&Array2<T>,output:&str)-> std::io::Result<()>
{
    use std::fs::File;
    use std::io::Write;
    let mut file=File::create(output).expect("Unable to BAND.dat");
    let n=data.len_of(Axis(0));
    let s=data.len_of(Axis(1));
    let mut s0=String::new();
    for i in 0..n{
        for j in 0..s{
            if data[[i,j]]>=T::from(0.0){
                s0.push_str("     ");
            }else{
                s0.push_str("    ");
            }
            let aa= format!("{:.6}", data[[i,j]]);
            s0.push_str(&aa);
        }
        s0.push_str("\n");
    }
    writeln!(file,"{}",s0)?;
    Ok(())
}

pub fn  write_txt_1<T:usefloat>(data:&Array1<T>,output:&str)-> std::io::Result<()>
{
    use std::fs::File;
    use std::io::Write;
    let mut file=File::create(output).expect("Unable to BAND.dat");
    let n=data.len_of(Axis(0));
    let mut s0=String::new();
    for i in 0..n{
        if data[[i]]>=T::from(0.0){
            s0.push_str(" ");
        }
        let aa= format!("{:.6}\n", data[[i]]);
        s0.push_str(&aa);
    }
    writeln!(file,"{}",s0)?;
    Ok(())
}



////下面是宏------------------------------------------------------
/*
macro_rules! update_hamiltonian {
    //这个代码是用来更新哈密顿量的, 判断是否有自旋, 以及要更新的 ind_i, ind_j,
    //输入一个哈密顿量, 返回一个新的哈密顿量
    ($spin:expr, $pauli:expr, $tmp:expr, $new_ham:expr, $ind_i:expr, $ind_j:expr,$norb:expr) => {
        {if $spin {
            match $pauli {
                0 => {
                    $new_ham[[$ind_i, $ind_j]] = $tmp;
                    $new_ham[[$ind_i + $norb, $ind_j + $norb]] = $tmp;
                }
                1 => {
                    $new_ham[[$ind_i + $norb, $ind_j]] = $tmp;
                    $new_ham[[$ind_i, $ind_j + $norb]] = $tmp;
                }
                2 => {
                    $new_ham[[$ind_i + $norb, $ind_j]] = $tmp * Complex::<f64>::i();
                    $new_ham[[$ind_i, $ind_j + $norb]] = -$tmp * Complex::<f64>::i();
                }
                3 => {
                    $new_ham[[$ind_i, $ind_j]] = $tmp;
                    $new_ham[[$ind_i + $norb, $ind_j + $norb]] = -$tmp;
                }
                /*
                4 => {
                    $new_ham[[$ind_i, $ind_j + $norb]] = $tmp;
                }
                5 => {
                    $new_ham[[$ind_i + $norb, $ind_j]] = $tmp;
                }
                */
                _ => todo!(),
            }
        } else {
            $new_ham[[$ind_i, $ind_j]] = $tmp;
        }
        $new_ham
    }};
}

macro_rules! add_hamiltonian {
    //这个代码是用来更新哈密顿量的, 判断是否有自旋, 以及要更新的 ind_i, ind_j,
    //输入一个哈密顿量, 返回一个新的哈密顿量
    ($spin:expr, $pauli:expr, $tmp:expr, $new_ham:expr, $ind_i:expr, $ind_j:expr,$norb:expr) => {
        {if $spin {
            match $pauli {
                0 => {
                    $new_ham[[$ind_i, $ind_j]] += $tmp;
                    $new_ham[[$ind_i + $norb, $ind_j + $norb]] += $tmp;
                }
                1 => {
                    $new_ham[[$ind_i + $norb, $ind_j]] += $tmp;
                    $new_ham[[$ind_i, $ind_j + $norb]] += $tmp;
                }
                2 => {
                    $new_ham[[$ind_i + $norb, $ind_j]] += $tmp * Complex::<f64>::i();
                    $new_ham[[$ind_i, $ind_j + $norb]] -= $tmp * Complex::<f64>::i();
                }
                3 => {
                    $new_ham[[$ind_i, $ind_j]] += $tmp;
                    $new_ham[[$ind_i + $norb, $ind_j + $norb]] -= $tmp;
                }
                /*
                4 => {
                    $new_ham[[$ind_i, $ind_j + $norb]] += $tmp;
                }
                5 => {
                    $new_ham[[$ind_i + $norb, $ind_j]] += $tmp;
                }
                */
                _ => todo!(),
            }
        } else {
            $new_ham[[$ind_i, $ind_j]] += $tmp;
        }
        $new_ham
    }};
}
*/
#[macro_export]
macro_rules! plot{
    ($x0:expr,$y0:expr,$name:expr)=>{{
        use gnuplot::{Figure, Caption, Color};
        use gnuplot::{AxesCommon};
        use gnuplot::AutoOption::*;
        use gnuplot::Tick::*;
        let mut fg = Figure::new();
        let x:Vec<f64>=$x0.to_vec();
        let axes=fg.axes2d();
        /*
        let n=x.len();
        if $y0.ndim()==2{
            let n0=$y0.len_of(Axis(1));
            for i in 0..n0{
                let y:Vec<f64>=$y0.slice(s![..,i]).to_owned().to_vec();
                axes.lines(&x, &y, &[Color("black")]);
            }
        }else{
            let y:Vec<f64>=$y0.to_vec();
            axes.lines(&x, &y, &[Color("black")]);
        }
        */

        let y:Vec<f64>=$y0.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        fg.set_terminal("pdfcairo", &$name);
        fg.show();
    }};
}



///An example
///
///```
///use gnuplot::{Color,Figure, AxesCommon, AutoOption::Fix,HOT};
///use gnuplot::Major;
///use ndarray::*;
///use ndarray::prelude::*;
///use num_complex::Complex;
///use Rustb::*;
///
///fn graphene(){
///    let li:Complex<f64>=1.0*Complex::i();
///    let t1=1.0+0.0*li;
///    let t2=0.1+0.0*li;
///    let t3=0.0+0.0*li;
///    let delta=0.5;
///    let dim_r:usize=2;
///    let norb:usize=2;
///    let lat=arr2(&[[3.0_f64.sqrt(),-1.0],[3.0_f64.sqrt(),1.0]]);
///    let orb=arr2(&[[0.0,0.0],[1.0/3.0,1.0/3.0]]);
///    let mut model=Model::tb_model(dim_r,lat,orb,false,None,None);
///    model.set_onsite(&arr1(&[delta,-delta]),0);
///    model.add_hop(t1,0,1,&array![0,0],0);
///    model.add_hop(t1,0,1,&array![-1,0],0);
///    model.add_hop(t1,0,1,&array![0,-1],0);
///    model.add_hop(t2,0,0,&array![1,0],0);
///    model.add_hop(t2,1,1,&array![1,0],0);
///    model.add_hop(t2,0,0,&array![0,1],0);
///    model.add_hop(t2,1,1,&array![0,1],0);
///    model.add_hop(t2,0,0,&array![1,-1],0);
///    model.add_hop(t2,1,1,&array![1,-1],0);
///    model.add_hop(t3,0,1,&array![1,-1],0);
///    model.add_hop(t3,0,1,&array![-1,1],0);
///    model.add_hop(t3,0,1,&array![-1,-1],0);
///    let nk:usize=1001;
///    let path=[[0.0,0.0],[2.0/3.0,1.0/3.0],[0.5,0.5],[0.0,0.0]];
///    let path=arr2(&path);
///    let (k_vec,k_dist,k_node)=model.k_path(&path,nk);
///    let (eval,evec)=model.solve_all_parallel(&k_vec);
///    let label=vec!["G","K","M","G"];
///    let (k_vec,k_dist,k_node)=model.k_path(&path,nk); //generate the k vector 
///    let eval=model.solve_band_all_parallel(&k_vec);  //calculate the bands
///    let mut fg = Figure::new();
///    let x:Vec<f64>=k_dist.to_vec();
///    let axes=fg.axes2d();
///    for i in 0..model.nsta{
///        let y:Vec<f64>=eval.slice(s![..,i]).to_owned().to_vec();
///        axes.lines(&x, &y, &[Color("black")]);
///    }
///    let axes=axes.set_x_range(Fix(0.0), Fix(k_node[[k_node.len()-1]]));
///    let label=label.clone();
///    let mut show_ticks=Vec::new();
///    for i in 0..k_node.len(){
///        let A=k_node[[i]];
///        let B=label[i];
///        show_ticks.push(Major(A,Fix(B)));
///    }
///    axes.set_x_ticks_custom(show_ticks.into_iter(),&[],&[]);
///    let k_node=k_node.to_vec();
///    let mut jpg_name=String::new();
///    jpg_name.push_str("band.jpg");
///    fg.set_terminal("jpeg", &jpg_name);
///    fg.show();
///
///    //start to draw the band structure
///    //Starting to calculate the edge state, first is the zigzag state
///    let nk:usize=501;
///    let U=arr2(&[[1.0,1.0],[-1.0,1.0]]);
///    let super_model=model.make_supercell(&U);
///    let zig_model=super_model.cut_piece(100,0);
///    let path=[[0.0,0.0],[0.0,0.5],[0.0,1.0]];
///    let path=arr2(&path);
///    let label=vec!["G","M","G"];
///    zig_model.show_band(&path,&label,nk,"graphene_zig");
///    //Starting to calculate the DOS of graphene
///    let nk:usize=101;
///    let kmesh=arr1(&[nk,nk]);
///    let E_min=-3.0;
///    let E_max=3.0;
///    let E_n=1000;
///    let (E0,dos)=model.dos(&kmesh,E_min,E_max,E_n,1e-2);
///    //start to show DOS
///    let mut fg = Figure::new();
///    let x:Vec<f64>=E0.to_vec();
///    let axes=fg.axes2d();
///    let y:Vec<f64>=dos.to_vec();
///    axes.lines(&x, &y, &[Color("black")]);
///    let mut show_ticks=Vec::<String>::new();
///    let mut pdf_name=String::new();
///    pdf_name.push_str("dos.jpg");
///    fg.set_terminal("pdfcairo", &pdf_name);
///    fg.show();
///}
///```
///
///


#[cfg(test)]
mod tests {
    use std::f64::consts::PI;
    use num_complex::Complex;
    use super::*;
    use ndarray::prelude::*;
    use ndarray::*;
    use std::time::{Duration, Instant};
    use gnuplot::{Major,Figure,Color,PointSymbol,AutoOption,Fix,AxesCommon,LineStyle,Solid,Font,TextOffset,Rotate};


    fn  write_txt(data:Array2<f64>,output:&str)-> std::io::Result<()>{
        use std::fs::File;
        use std::io::Write;
        let mut file=File::create(output).expect("Unable to BAND.dat");
        let n=data.len_of(Axis(0));
        let s=data.len_of(Axis(1));
        let mut s0=String::new();
        for i in 0..n{
            for j in 0..s{
                if data[[i,j]]>=0.0{
                    s0.push_str("     ");
                }else{
                    s0.push_str("    ");
                }
                let aa= format!("{:.6}", data[[i,j]]);
                s0.push_str(&aa);
            }
            s0.push_str("\n");
        }
        writeln!(file,"{}",s0)?;
        Ok(())
    }

    fn  write_txt_1(data:Array1<f64>,output:&str)-> std::io::Result<()>{
        use std::fs::File;
        use std::io::Write;
        let mut file=File::create(output).expect("Unable to BAND.dat");
        let n=data.len_of(Axis(0));
        let mut s0=String::new();
        for i in 0..n{
            if data[[i]]>=0.0{
                s0.push_str(" ");
            }
            let aa= format!("{:.6}\n", data[[i]]);
            s0.push_str(&aa);
        }
        writeln!(file,"{}",s0)?;
        Ok(())
    }
    #[test]
    fn function_speed_test(){
        println!("开始测试各个函数的运行速度, 用次近邻的石墨烯模型");
        let li:Complex<f64>=1.0*Complex::i();
        let t=2.0+0.0*li;
        let t2=-1.0+0.0*li;
        let delta=0.7;
        let dim_r:usize=2;
        let norb:usize=2;
        let lat=arr2(&[[1.0,0.0],[0.5,3.0_f64.sqrt()/2.0]]);
        let orb=arr2(&[[1.0/3.0,1.0/3.0],[2.0/3.0,2.0/3.0]]);
        let mut model=Model::tb_model(dim_r,lat,orb,false,None,None);
        model.set_onsite(&arr1(&[-delta,delta]),0);
        let R0:Array2::<isize>=arr2(&[[0,0],[-1,0],[0,-1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.add_hop(t,0,1,&R,0);
        }
        let R0:Array2::<isize>=arr2(&[[1,0],[-1,1],[0,-1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.add_hop(t2*li,0,0,&R,0);
        }
        let R0:Array2::<isize>=arr2(&[[-1,0],[1,-1],[0,1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.add_hop(t2*li,1,1,&R,0);
        }

        //开始计算单线程和多线程求解能带的速度
        println!("开始计算单线程和多线程求解能带的速度");
        let nk=1001;
        let k_mesh=array![nk,nk];
        let kvec=gen_kmesh(&k_mesh);
        {
        let start = Instant::now();   // 开始计时
        let band=model.solve_band_all(&kvec);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("solve_band_all took {} seconds", duration.as_secs_f64());   // 输出执行时间
        }
        {
        let start = Instant::now();   // 开始计时
        let band=model.solve_band_all_parallel(&kvec);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("solve_band_all_parallel took {} seconds", duration.as_secs_f64());   // 输出执行时间
        }

        {
        println!("开始计算 gen_v 的耗时速度, 为了平均, 我们单线程求解gen_v");
        let start = Instant::now();   // 开始计时
        let A:Vec<_>=kvec.outer_iter().into_par_iter().map(|x| model.gen_v(&x.to_owned())).collect();
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("run gen_v {} times took {} seconds", kvec.nrows(), duration.as_secs_f64());   // 输出执行时间
        }

        println!("开始测试 求解贝利曲率的耗时速度, 多线程测试");
        let nk:usize=1001;
        let T:f64=0.0;
        let eta:f64=0.001;
        let og:f64=0.0;
        let mu:f64=0.0;
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let dir_3=arr1(&[0.0,1.0]);
        let spin:usize=0;
        let kmesh=arr1(&[nk,nk]);
        {
        let start = Instant::now();   // 开始计时
        let conductivity=model.Hall_conductivity(&kmesh,&dir_1,&dir_2,mu,T,og,spin,eta);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("Hall_conductivity took {} seconds", duration.as_secs_f64());   // 输出执行时间
        }
    }
    #[test]
    fn Haldan_model(){
        let li:Complex<f64>=1.0*Complex::i();
        let t=-1.0+0.0*li;
        let t2=-1.0+0.0*li;
        let delta=0.7;
        let dim_r:usize=2;
        let norb:usize=2;
        let lat=arr2(&[[1.0,0.0],[0.5,3.0_f64.sqrt()/2.0]]);
        let orb=arr2(&[[1.0/3.0,1.0/3.0],[2.0/3.0,2.0/3.0]]);
        let mut model=Model::tb_model(dim_r,lat,orb,false,None,None);
        model.set_onsite(&arr1(&[-delta,delta]),0);
        let R0:Array2::<isize>=arr2(&[[0,0],[-1,0],[0,-1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.add_hop(t,0,1,&R,0);
        }
        let R0:Array2::<isize>=arr2(&[[1,0],[-1,1],[0,-1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.add_hop(t2*li,0,0,&R,0);
        }
        let R0:Array2::<isize>=arr2(&[[-1,0],[1,-1],[0,1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.add_hop(t2*li,1,1,&R,0);
        }
        let nk:usize=1001;
        let path=[[0.0,0.0],[2.0/3.0,1.0/3.0],[0.5,0.5],[1.0/3.0,2.0/3.0],[0.0,0.0]];
        let path=arr2(&path);
        let (k_vec,k_dist,k_node)=model.k_path(&path,nk);
        let (eval,evec)=model.solve_all_parallel(&k_vec);
        let label=vec!["G","K","M","K'","G"];
        model.show_band(&path,&label,nk,"tests/Haldan");
        /////开始计算体系的霍尔电导率//////
        let nk:usize=50;
        let T:f64=0.0;
        let eta:f64=0.001;
        let og:f64=0.0;
        let mu:f64=0.0;
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let dir_3=arr1(&[0.0,1.0]);
        let spin:usize=0;
        let kmesh=arr1(&[nk,nk]);

        let start = Instant::now();   // 开始计时
        let conductivity=model.Hall_conductivity(&kmesh,&dir_1,&dir_2,mu,T,og,spin,eta);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("quantom_Hall_effect={}",conductivity/(2.0*PI));
        println!("function_a took {} seconds", duration.as_secs_f64());   // 输出执行时间

        let nk:usize=50;
        let kmesh=arr1(&[nk,nk]);
        let start = Instant::now();   // 开始计时
        let conductivity=model.Hall_conductivity_adapted(&kmesh,&dir_1,&dir_2,mu,T,og,spin,eta,0.01,0.01);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("霍尔电导率{}",conductivity/(2.0*PI));
        println!("function_a took {} seconds", duration.as_secs_f64());   // 输出执行时间
        //测试一下速度算符的对角项是否等于能带本征值的导数
        let kvec=array![1.0/2.0,1.0/2.0];
        let (band,evec)=model.solve_onek(&kvec);
        let evec_conj=evec.clone().map(|x| x.conj());
        let (omega_n,band)=model.berry_curvature_n_onek(&kvec,&dir_1,&dir_2,og,0,1e-5);
        let mut partial_ve=Array1::<f64>::zeros(model.nsta);
        let v=model.gen_v(&kvec);
        for i in 0..model.dim_r{
            let vs=v.slice(s![i,..,..]).to_owned(); 
            let vs=evec_conj.dot(&(vs.dot(&evec.clone().reversed_axes()))).diag().map(|x| x.re);
            partial_ve=partial_ve.clone()+vs*dir_3[[i]];
        }
        println!("{}",partial_ve);
        println!("{}",omega_n);
        //画一下3000k的时候的费米导数分布
        let T=100.0;
        let nk:usize=101;
        let kmesh=arr1(&[nk,nk]);
        println!("{}",kmesh);
        let E_min=-3.0;
        let E_max=3.0;
        let E_n=1000;
        let mu=Array1::linspace(E_min,E_max,E_n);
        let beta:f64=1.0/T/(8.617e-5);
        let f:Array1<f64>=1.0/((beta*mu.clone()).mapv(f64::exp)+1.0);
        let par_f=beta*f.clone()*(1.0-f);
        let mut fg = Figure::new();
        let x:Vec<f64>=mu.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=par_f.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/Haldan");
        pdf_name.push_str("/par_f.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();

        //画一下omega_n 随能量的分布
        let kvec:Array2::<f64>=gen_kmesh(&kmesh);
        let nk:usize=kvec.len_of(Axis(0));
        let (omega,band)=model.berry_curvature_dipole_n(&kvec,&dir_1,&dir_2,&dir_3,og,spin,eta);
        let omega=omega.into_raw_vec();
        let omega=Array1::from(omega);
        let band=band.into_raw_vec();
        let band=Array1::from(band);
        let mut fg = Figure::new();
        let x:Vec<f64>=band.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=omega.to_vec();
        axes.points( x.iter(),y.iter(),&[Color("black"),PointSymbol((".").chars().next().unwrap())]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/Haldan");
        pdf_name.push_str("/omega_energy.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();


        //开始算非线性霍尔电导

        let sigma:Array1<f64>=model.Nonlinear_Hall_conductivity_Extrinsic(&kmesh,&dir_1,&dir_2,&dir_3,&mu,T,og,0,1e-5);

        //开始绘制非线性电导
        let mut fg = Figure::new();
        let x:Vec<f64>=mu.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=sigma.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/Haldan");
        pdf_name.push_str("/nonlinear_ex.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();

        let (E0,dos)=model.dos(&kmesh,E_min,E_max,E_n,1e-2);
        //开始绘制dos
        let mut fg = Figure::new();
        let x:Vec<f64>=E0.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=dos.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/Haldan");
        pdf_name.push_str("/dos.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();


        //-----算一下wilson loop 的结果-----------------------
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let occ=vec![0];
        let wcc=model.wannier_centre(&occ,&array![0.0,0.0],&dir_1,&dir_2,101,101);
        let nocc=occ.len();
        println!("{}",wcc);


        let mut fg = Figure::new();
        let x:Vec<f64>=Array1::<f64>::linspace(0.0,1.0,101).to_vec();
        let axes=fg.axes2d();
        for i in 0..nocc{
            let y:Vec<f64>=wcc.row(i).to_vec();
            axes.lines(&x, &y, &[Color("black"),LineStyle(Solid)]);
        }
        let axes=axes.set_x_range(Fix(0.0), Fix(1.0));
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/Haldan/wcc.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();
    }
    #[test]
    fn graphene(){
        let li:Complex<f64>=1.0*Complex::i();
        let t1=1.0+0.0*li;
        let t2=0.1+0.0*li;
        let t3=0.0+0.0*li;
        let delta=0.0;
        let dim_r:usize=2;
        let norb:usize=2;
        let lat=arr2(&[[3.0_f64.sqrt(),-1.0],[3.0_f64.sqrt(),1.0]]);
        let orb=arr2(&[[0.0,0.0],[1.0/3.0,1.0/3.0]]);
        let mut model=Model::tb_model(dim_r,lat,orb,false,None,None);
        model.set_onsite(&arr1(&[delta,-delta]),0);
        model.add_hop(t1,0,1,&array![0,0],0);
        model.add_hop(t1,0,1,&array![-1,0],0);
        model.add_hop(t1,0,1,&array![0,-1],0);
        model.add_hop(t2,0,0,&array![1,0],0);
        model.add_hop(t2,1,1,&array![1,0],0);
        model.add_hop(t2,0,0,&array![0,1],0);
        model.add_hop(t2,1,1,&array![0,1],0);
        model.add_hop(t2,0,0,&array![1,-1],0);
        model.add_hop(t2,1,1,&array![1,-1],0);
        model.add_hop(t3,0,1,&array![1,-1],0);
        model.add_hop(t3,0,1,&array![-1,1],0);
        model.add_hop(t3,0,1,&array![-1,-1],0);
        let nk:usize=1001;
        let path=[[0.0,0.0],[2.0/3.0,1.0/3.0],[0.5,0.5],[0.0,0.0]];
        let path=arr2(&path);
        let (k_vec,k_dist,k_node)=model.k_path(&path,nk);
        let (eval,evec)=model.solve_all_parallel(&k_vec);
        let label=vec!["G","K","M","G"];
        model.show_band(&path,&label,nk,"tests/graphene");
        /////开始计算体系的霍尔电导率//////
        let nk:usize=11;
        let T:f64=0.0;
        let eta:f64=0.001;
        let og:f64=0.0;
        let mu:f64=0.0;
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let spin:usize=0;
        let kmesh=arr1(&[nk,nk]);
        let (eval,evec)=model.solve_onek(&arr1(&[0.3,0.5]));
        let conductivity=model.Hall_conductivity(&kmesh,&dir_1,&dir_2,mu,T,og,spin,eta);
        //println!("{}",conductivity/(2.0*PI));
        //开始计算边缘态, 首先是zigsag态
        let nk:usize=501;
        let U=arr2(&[[1.0,1.0],[-1.0,1.0]]);
        let super_model=model.make_supercell(&U);
        let zig_model=super_model.cut_piece(100,0);
        let path=[[0.0,0.0],[0.0,0.5],[0.0,1.0]];
        //let path=[[0.0,0.0],[0.5,0.0],[1.0,0.0]];
        //let path=[[0.0,0.0],[0.5,0.0],[0.5,0.5],[0.0,0.5],[0.0,0.0]];
        let path=arr2(&path);
        let (k_vec,k_dist,k_node)=super_model.k_path(&path,nk);
        let (eval,evec)=super_model.solve_all_parallel(&k_vec);
        //let label=vec!["G","X","M","Y","G"];
        let label=vec!["G","M","G"];
        zig_model.show_band(&path,&label,nk,"tests/graphene_zig");

        //开始计算石墨烯的态密度
        let nk:usize=101;
        let kmesh=arr1(&[nk,nk]);
        let E_min=-3.0;
        let E_max=3.0;
        let E_n=1000;
        let (E0,dos)=model.dos(&kmesh,E_min,E_max,E_n,1e-2);
        //开始绘制dos
        let mut fg = Figure::new();
        let x:Vec<f64>=E0.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=dos.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/graphene");
        pdf_name.push_str("/dos.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();
        



        //开始计算非线性霍尔电导
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let dir_3=arr1(&[1.0,0.0]);
        let og=0.0;
        let mu=Array1::linspace(E_min,E_max,E_n);
        let T=300.0;
        let sigma:Array1<f64>=model.Nonlinear_Hall_conductivity_Extrinsic(&kmesh,&dir_1,&dir_2,&dir_3,&mu,T,og,0,1e-5);

        //开始绘制非线性电导
        let mut fg = Figure::new();
        let x:Vec<f64>=mu.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=sigma.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/graphene");
        pdf_name.push_str("/nonlinear_ex.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();
    }

    #[test]
    fn kane_mele(){
        let li:Complex<f64>=1.0*Complex::i();
        let t=-1.0;
        let delta=0.0;
        let alter=0.0+0.0*li;
        let soc=0.06*t;
        let rashba=0.0*t;
        let dim_r:usize=2;
        let norb:usize=2;
        let lat=arr2(&[[1.0,0.0],[0.5,3.0_f64.sqrt()/2.0]]);
        let orb=arr2(&[[1.0/3.0,1.0/3.0],[2.0/3.0,2.0/3.0]]);
        let mut model=Model::tb_model(dim_r,lat,orb,true,None,None);
        model.set_onsite(&arr1(&[delta,-delta]),0);
        let R0:Array2::<isize>=arr2(&[[0,0],[-1,0],[0,-1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.set_hop(t,0,1,&R,0);
        }
        let R0:Array2::<isize>=arr2(&[[1,0],[-1,1],[0,-1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.set_hop(soc*li,0,0,&R,3);
        }
        let R0:Array2::<isize>=arr2(&[[-1,0],[1,-1],[0,1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.set_hop(soc*li,1,1,&R,3);
        }
        //加入rashba项
        let R0:Array2::<isize>=arr2(&[[1,0],[-1,1],[0,-1]]);
        for  (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            let r0=R.map(|x| *x as f64).dot(&model.lat);
            model.add_hop(rashba*li*r0[[1]],0,0,&R,1);
            model.add_hop(rashba*li*r0[[0]],0,0,&R,2);
        }
        
        let R0:Array2::<isize>=arr2(&[[-1,0],[1,-1],[0,1]]);
        for  (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            let r0=R.map(|x| *x as f64).dot(&model.lat);
            model.add_hop(-rashba*li*r0[[1]],1,1,&R,1);
            model.add_hop(-rashba*li*r0[[0]],1,1,&R,2);
        }
        let nk:usize=1001;
        let path=[[0.0,0.0],[2.0/3.0,1.0/3.0],[0.5,0.5],[1.0/3.0,2.0/3.0],[0.0,0.0]];
        let path=arr2(&path);
        let (k_vec,k_dist,k_node)=model.k_path(&path,nk);
        let (eval,evec)=model.solve_all_parallel(&k_vec);
        let label=vec!["G","K","M","K'","G"];
        model.show_band(&path,&label,nk,"tests/kane");
        //开始计算超胞

        let super_model=model.cut_piece(50,0);
        let path=[[0.0,0.0],[0.0,0.5],[0.0,1.0]];
        let path=arr2(&path);
        let label=vec!["G","M","G"];
        super_model.show_band(&path,&label,nk,"tests/kane_super");
        //开始计算表面态
        let green=surf_Green::from_Model(&model,0,1e-3);
        let E_min=-1.0;
        let E_max=1.0;
        let E_n=nk.clone();
        let path=[[0.0],[0.5],[1.0]];
        let path=arr2(&path);
        let label=vec!["G","M","G"];
        green.show_surf_state("tests/kane",&path,&label,nk,E_min,E_max,E_n,0);


        //-----算一下wilson loop 的结果-----------------------
        let n=301;
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let occ=vec![0,1];
        let wcc=model.wannier_centre(&occ,&array![0.0,0.0],&dir_1,&dir_2,n,n);
        let nocc=occ.len();
        let mut fg = Figure::new();
        let x:Vec<f64>=Array1::<f64>::linspace(0.0,1.0,n).to_vec();
        let axes=fg.axes2d();
        for j in -1..2{
            for i in 0..nocc{
                let a=wcc.row(i).to_owned()+(j as f64)*2.0*PI;
                let y:Vec<f64>=a.to_vec();
                axes.points(&x, &y, &[Color("black"),gnuplot::PointSymbol('O')]);
            }
        }
        let axes=axes.set_x_range(Fix(0.0), Fix(1.0));
        let axes=axes.set_y_range(Fix(0.0), Fix(2.0*PI));
        let show_ticks=vec![Major(0.0,Fix("0")),Major(0.5,Fix("π")),Major(1.0,Fix("2π"))];
        axes.set_x_ticks_custom(show_ticks.into_iter(),&[],&[Font("Times New Roman",32.0)]);
        let show_ticks=vec![Major(0.0,Fix("0")),Major(PI,Fix("π")),Major(2.0*PI,Fix("2π"))];
        axes.set_y_ticks_custom(show_ticks.into_iter(),&[],&[Font("Times New Roman",32.0)]);
        axes.set_x_label("k_x",&[Font("Times New Roman",32.0),TextOffset(0.0,-0.5)]);
        axes.set_y_label("WCC",&[Font("Times New Roman",32.0),Rotate(90.0),TextOffset(-1.0,0.0)]);
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/kane/wcc.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();


        /////开始计算体系的霍尔电导率//////
        let nk:usize=101;
        let T:f64=0.0;
        let eta:f64=0.001;
        let og:f64=0.0;
        let mu:f64=0.0;
        //let dir_1=arr1(&[3.0_f64.sqrt()/2.0,-0.5]);
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let spin:usize=3;
        let kmesh=arr1(&[nk,nk]);
        let start = Instant::now();   // 开始计时
        let conductivity=model.Hall_conductivity(&kmesh,&dir_1,&dir_2,mu,T,og,spin,eta);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("{}",conductivity/(2.0*PI));
        println!("function_a took {} seconds", duration.as_secs_f64());   // 输出执行时间
        let nk:usize=31;
        let kmesh=arr1(&[nk,nk]);
        let start = Instant::now();   // 开始计时
        let conductivity=model.Hall_conductivity_adapted(&kmesh,&dir_1,&dir_2,mu,T,og,spin,eta,0.01,0.01);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("{}",conductivity/(2.0*PI));
        println!("function_a took {} seconds", duration.as_secs_f64());   // 输出执行时间

        let (E0,dos)=model.dos(&kmesh,E_min,E_max,E_n,1e-2);
        //开始绘制dos
        let mut fg = Figure::new();
        let x:Vec<f64>=E0.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=dos.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/kane");
        pdf_name.push_str("/dos.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();
        //绘制非线性霍尔电导的平面图
        
       //画一下贝利曲率的分布
        let nk:usize=1000;
        let kmesh=arr1(&[nk,nk]);
        let kvec=gen_kmesh(&kmesh);
        //let kvec=kvec-0.5;
        let kvec=kvec*2.0;
        let kvec=model.lat.dot(&(kvec.reversed_axes()));
        let kvec=kvec.reversed_axes();
        let berry_curv=model.berry_curvature(&kvec,&dir_1,&dir_2,T,0.0,0.0,1,1e-3);
        let data=berry_curv.into_shape((nk,nk)).unwrap();
        draw_heatmap(&(-data).map(|x| (x+1.0).log(10.0)),"./tests/kane/berry_curvature_distribution.pdf");

        //开始考虑磁场, 加入磁性
        let B=0.1+0.0*li;
        let tha=0.0/180.0*PI;

        model.add_hop(B*tha.cos(),0,0,&array![0,0],1);
        model.add_hop(B*tha.cos(),1,1,&array![0,0],1);
        model.add_hop(B*tha.sin(),0,0,&array![0,0],2);
        model.add_hop(B*tha.sin(),1,1,&array![0,0],2);
        //考虑添加onsite 项破坏空间反演和mirror

        let green=surf_Green::from_Model(&model,0,1e-3);
        let E_min=-1.0;
        let E_max=1.0;
        let E_n=nk.clone();
        let path=[[0.0],[0.5],[1.0]];
        let path=arr2(&path);
        let label=vec!["G","M","G"];
        green.show_surf_state("tests/kane/magnetic",&path,&label,nk,E_min,E_max,E_n,0);

        //-----算一下wilson loop 的结果-----------------------
        let n=301;
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let occ=vec![0,1];
        let wcc=model.wannier_centre(&occ,&array![0.0,0.0],&dir_1,&dir_2,n,n);
        let nocc=occ.len();
        let mut fg = Figure::new();
        let x:Vec<f64>=Array1::<f64>::linspace(0.0,1.0,n).to_vec();
        let axes=fg.axes2d();
        for j in -1..2{
            for i in 0..nocc{
                let a=wcc.row(i).to_owned()+(j as f64)*2.0*PI;
                let y:Vec<f64>=a.to_vec();
                axes.points(&x, &y, &[Color("black"),gnuplot::PointSymbol('O')]);
            }
        }
        let axes=axes.set_x_range(Fix(0.0), Fix(1.0));
        let axes=axes.set_y_range(Fix(0.0), Fix(2.0*PI));
        let show_ticks=vec![Major(0.0,Fix("0")),Major(0.5,Fix("π")),Major(1.0,Fix("2π"))];
        axes.set_x_ticks_custom(show_ticks.into_iter(),&[],&[Font("Times New Roman",32.0)]);
        let show_ticks=vec![Major(0.0,Fix("0")),Major(PI,Fix("π")),Major(2.0*PI,Fix("2π"))];
        axes.set_y_ticks_custom(show_ticks.into_iter(),&[],&[Font("Times New Roman",32.0)]);
        axes.set_x_label("k_x",&[Font("Times New Roman",32.0),TextOffset(0.0,-0.5)]);
        axes.set_y_label("WCC",&[Font("Times New Roman",32.0),Rotate(90.0),TextOffset(-1.0,0.0)]);
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/kane/magnetic/wcc.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();


        //开始计算角态
        let model=model.make_supercell(&array![[0.0,-1.0],[1.0,0.0]]);
        let num=10;
        /*
        let model_1=model.cut_piece(num,0);
        let new_model=model_1.cut_piece(num,1);
        */
        let new_model=model.cut_dot(num,6,None);
        let mut s=0;
        let start = Instant::now();
        let (band,evec)=new_model.solve_range_onek(&arr1(&[0.0,0.0]),(-0.3,0.3),1e-5);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("solve_band_all took {} seconds", duration.as_secs_f64());   // 输出执行时间
        let nresults=band.len();
        let show_evec=evec.to_owned().map(|x| x.norm_sqr());
        let mut size=Array2::<f64>::zeros((new_model.nsta,new_model.natom));
        let norb=new_model.norb;
        for i in 0..nresults{
            let mut s=0;
            for j in 0..new_model.natom{
                for k in 0..new_model.atom_list[j]{
                    size[[i,j]]+=show_evec[[i,s]]+show_evec[[i,s+new_model.norb]];
                    s+=1;
                }
            }
        }

        let show_str=new_model.atom.clone().dot(&model.lat);
        let show_str=show_str.slice(s![..,0..2]).to_owned();
        let show_size=size.row(new_model.norb).to_owned();
        use std::fs::create_dir_all;
        create_dir_all("tests/kane/magnetic").expect("can't creat the file");
        write_txt_1(band,"tests/kane/magnetic/band.txt");
        write_txt(size,"tests/kane/magnetic/evec.txt");
        write_txt(show_str,"tests/kane/magnetic/structure.txt");
    }

    #[test]
    fn Enonlinear(){
        //!arxiv 1706.07702
        //!用来测试非线性外在的霍尔电导
        let li:Complex<f64>=1.0*Complex::i();
        let delta=0.;
        let t1=1.0+0.0*li;
        let t2=0.2*t1;
        let t3=0.2*t1;
        let dim_r:usize=3;
        let norb:usize=2;
        let lat=arr2(&[[1.0,0.0,0.0],[0.5,3.0_f64.sqrt()/2.0,0.0],[0.0,0.0,1.0]]);
        let orb=arr2(&[[1.0/3.0,1.0/3.0,0.0],[2.0/3.0,2.0/3.0,0.0]]);
        let mut model=Model::tb_model(dim_r,lat,orb,false,None,None);
        model.set_onsite(&arr1(&[delta,-delta]),0);
        let R0:Array2::<isize>=arr2(&[[0,0,0],[-1,0,0],[0,-1,0]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.set_hop(t1,0,1,&R,0);
        }
        let R0:Array2::<isize>=arr2(&[[1,0,1],[-1,1,1],[0,-1,1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.set_hop(t2,0,0,&R,0);
        }       
        let R0:Array2::<isize>=arr2(&[[1,0,-1],[-1,1,-1],[0,-1,-1]]);
        for (i,R) in R0.axis_iter(Axis(0)).enumerate(){
            let R=R.to_owned();
            model.set_hop(t2,1,1,&R,0);
        }       
        let R=arr1(&[0,0,1]);
        model.set_hop(t3,0,0,&R,0);
        model.set_hop(t3,1,1,&R,0);
        let path=array![[0.0,0.0,0.0],[1.0/3.0,2.0/3.0,0.0],[0.5,0.5,0.0],[0.0,0.0,0.0],[1.0/3.0,2.0/3.0,0.0],[1.0/3.0,2.0/3.0,0.5],[0.0,0.0,0.0],[0.0,0.0,0.5],[1.0/3.0,2.0/3.0,0.5],[0.5,0.5,0.5],[0.0,0.0,0.5]];
        let label=vec!["G","K","M","G","K","H","G","A","H","L","A"];
        let nk=1001;
        model.show_band(&path,&label,nk,"tests/Enonlinear");


        //开始计算非线性霍尔电导
        let dir_1=arr1(&[1.0,0.0,0.0]);
        let dir_2=arr1(&[0.0,1.0,0.0]);
        let dir_3=arr1(&[0.0,0.0,1.0]);
        let nk:usize=100;
        let kmesh=arr1(&[nk,nk,nk]);
        let E_min=-3.0;
        let E_max=3.0;
        let E_n=1000;
        let og=0.0;
        let mu=Array1::linspace(E_min,E_max,E_n);
        let T=30.0;
        let sigma:Array1<f64>=model.Nonlinear_Hall_conductivity_Extrinsic(&kmesh,&dir_1,&dir_2,&dir_3,&mu,T,og,0,1e-5);

        //开始绘制非线性电导
        let mut fg = Figure::new();
        let x:Vec<f64>=mu.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=sigma.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        axes.set_y_range(Fix(-10.0),Fix(10.0));
        axes.set_x_range(Fix(E_min),Fix(E_max));
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/Enonlinear");
        pdf_name.push_str("/nonlinear_ex.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();

        let sigma:Array1<f64>=model.Nonlinear_Hall_conductivity_Intrinsic(&kmesh,&dir_1,&dir_2,&dir_3,&mu,T,3);
        //开始绘制非线性电导
        let mut fg = Figure::new();
        let x:Vec<f64>=mu.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=sigma.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        axes.set_y_range(Fix(-10.0),Fix(10.0));
        axes.set_x_range(Fix(E_min),Fix(E_max));
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/Enonlinear");
        pdf_name.push_str("/nonlinear_in.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();


        let (E0,dos)=model.dos(&kmesh,E_min,E_max,E_n,1e-2);
        //开始绘制dos
        let mut fg = Figure::new();
        let x:Vec<f64>=E0.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=dos.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/Enonlinear");
        pdf_name.push_str("/dos.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();


    }
    #[test]
    fn kagome(){
        let li:Complex<f64>=1.0*Complex::i();
        let t1=1.0+0.0*li;
        let t2=0.1+0.0*li;
        let dim_r:usize=2;
        let norb:usize=2;
        let lat=arr2(&[[3.0_f64.sqrt(),-1.0],[3.0_f64.sqrt(),1.0]]);
        let orb=arr2(&[[0.0,0.0],[1.0/3.0,0.0],[0.0,1.0/3.0]]);
        let mut model=Model::tb_model(dim_r,lat,orb,false,None,None);
        //最近邻hopping
        model.add_hop(t1,0,1,&array![0,0],0);
        model.add_hop(t1,2,0,&array![0,0],0);
        model.add_hop(t1,1,2,&array![0,0],0);
        model.add_hop(t1,0,2,&array![0,-1],0);
        model.add_hop(t1,0,1,&array![-1,0],0);
        model.add_hop(t1,2,1,&array![-1,1],0);
        let nk:usize=1001;
        let path=[[0.0,0.0],[2.0/3.0,1.0/3.0],[0.5,0.],[0.0,0.0]];
        let path=arr2(&path);
        let label=vec!["G","K","M","G"];
        model.show_band(&path,&label,nk,"tests/kagome/");
        //start to draw the band structure
        //Starting to calculate the edge state, first is the zigzag state
        let nk:usize=501;
        let U=arr2(&[[1.0,1.0],[-1.0,1.0]]);
        let super_model=model.make_supercell(&U);
        let zig_model=super_model.cut_piece(30,0);
        let path=[[0.0,0.0],[0.0,0.5],[0.0,1.0]];
        let path=arr2(&path);
        let (k_vec,k_dist,k_node)=super_model.k_path(&path,nk);
        let (eval,evec)=super_model.solve_all_parallel(&k_vec);
        let label=vec!["G","M","G"];
        zig_model.show_band(&path,&label,nk,"tests/kagome_zig/");
        //Starting to calculate the DOS of kagome
        let nk:usize=101;
        let kmesh=arr1(&[nk,nk]);
        let E_min=-3.0;
        let E_max=3.0;
        let E_n=1000;
        let (E0,dos)=model.dos(&kmesh,E_min,E_max,E_n,1e-2);
        //start to show DOS
        let mut fg = Figure::new();
        let x:Vec<f64>=E0.to_vec();
        let axes=fg.axes2d();
        let y:Vec<f64>=dos.to_vec();
        axes.lines(&x, &y, &[Color("black")]);
        let mut show_ticks=Vec::<String>::new();
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/kagome/");
        pdf_name.push_str("dos.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();
    }

    #[test]
    fn SSH(){
        let li:Complex<f64>=1.0*Complex::i();
        let t1=0.1+0.0*li;
        let t2=1.0+0.0*li;
        let dim_r:usize=1;
        let norb:usize=2;
        let lat=arr2(&[[1.0]]);
        let orb=arr2(&[[0.0],[0.5],[0.0],[0.5]]);
        let mut model=Model::tb_model(dim_r,lat,orb,false,None,None);
        model.add_hop(t1,0,1,&array![0],0);
        model.add_hop(t2,0,1,&array![-1],0);
        model.add_hop(t1,2,3,&array![0],0);
        model.add_hop(t2,2,3,&array![-1],0);
        let t_hop_1=0.0+0.0*li;
        let t_hop_2=0.0+0.0*li;
        model.add_hop(t_hop_1,0,2,&array![0],0);
        model.add_hop(t_hop_1,1,3,&array![0],0);
        /*
        model.add_hop(t_hop_1,0,3,array![0],0);
        model.add_hop(t_hop_1,1,2,array![0],0);
        */

        let nk:usize=1001;
        let path=[[0.0],[0.5],[1.0]];
        let path=arr2(&path);
        let label=vec!["G","M","G"];
        model.show_band(&path,&label,nk,"tests/SSH/");
        let mut super_model=model.cut_piece(5,0);

        let (band,evec)=super_model.solve_onek(&array![0.0]);
        println!("{}",band);
    }
    #[test]
    fn unfold_test(){
        use std::fs::create_dir_all;
        let li:Complex<f64>=1.0*Complex::i();
        let t1=1.0+0.0*li;
        let t2=0.1+0.0*li;
        let dim_r:usize=2;
        let norb:usize=2;
        let lat=arr2(&[[3.0_f64.sqrt(),-1.0],[3.0_f64.sqrt(),1.0]]);
        let orb=arr2(&[[0.,0.],[1.0/3.0,0.0],[0.0,1.0/3.0]]);
        let mut model=Model::tb_model(dim_r,lat,orb,true,None,None);
        //最近邻hopping
        model.add_hop(t1,0,1,&array![0,0],0);
        model.add_hop(t1,2,0,&array![0,0],0);
        model.add_hop(t1,1,2,&array![0,0],0);
        model.add_hop(t1,0,2,&array![0,-1],0);
        model.add_hop(t1,0,1,&array![-1,0],0);
        model.add_hop(t1,2,1,&array![-1,1],0);

        let nk:usize=1001;
        let path=array![[0.0,0.0],[2.0/3.0,1.0/3.0],[0.5,0.],[0.0,0.0]];
        let label=vec!["G","K","M","G"];
        let (kvec,kdist,knode)=model.k_path(&path,nk);
        let U=array![[1.0,1.0],[-5.0,4.0]];

        let start = Instant::now();   // 开始计时
        let super_model=model.make_supercell(&U);
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("make_supercell took {} seconds", duration.as_secs_f64());   // 输出执行时间
        let A=super_model.unfold(&U,&path,nk,-3.0,5.0,nk,1e-2,1e-3);
        let name="./tests/unfold_test/";
        create_dir_all(&name).expect("can't creat the file");
        draw_heatmap(&A.reversed_axes(),"./tests/unfold_test/unfold_band.pdf");
        super_model.show_band(&path,&label,nk,name);
    }
    #[test]
    fn BBH_model(){
        let li:Complex<f64>=1.0*Complex::i();
        let t1=0.1+0.0*li;
        let t2=1.0+0.0*li;
        let i0=-1.0;
        let dim_r:usize=2;
        let norb:usize=2;
        let lat=arr2(&[[1.0,0.0],[0.0,1.0]]);
        let orb=arr2(&[[0.0,0.0],[0.5,0.0],[0.5,0.5],[0.0,0.5]]);
        let mut model=Model::tb_model(dim_r,lat,orb,false,None,None);
        model.add_hop(t1,0,1,&array![0,0],0);
        model.add_hop(t1,1,2,&array![0,0],0);
        model.add_hop(t1,2,3,&array![0,0],0);
        model.add_hop(i0*t1,3,0,&array![0,0],0);
        model.add_hop(t2,0,1,&array![-1,0],0);
        model.add_hop(i0*t2,0,3,&array![0,-1],0);
        model.add_hop(t2,2,3,&array![1,0],0);
        model.add_hop(t2,2,1,&array![0,1],0);
        let nk:usize=1001;
        let path=[[0.0,0.0],[0.5,0.0],[0.5,0.5],[0.0,0.0]];
        let path=arr2(&path);
        let label=vec!["G","X","M","G"];
        model.show_band(&path,&label,nk,"tests/BBH/");


        //算一下wilson loop
        let n=301;
        let dir_1=arr1(&[1.0,0.0]);
        let dir_2=arr1(&[0.0,1.0]);
        let occ=vec![0,1];
        let wcc=model.wannier_centre(&occ,&array![0.0,0.0],&dir_1,&dir_2,n,n);
        let nocc=occ.len();
        let mut fg = Figure::new();
        let x:Vec<f64>=Array1::<f64>::linspace(0.0,1.0,n).to_vec();
        let axes=fg.axes2d();
        for j in -1..2{
            for i in 0..nocc{
                let a=wcc.row(i).to_owned()+(j as f64)*2.0*PI;
                let y:Vec<f64>=a.to_vec();
                axes.points(&x, &y, &[Color("black"),gnuplot::PointSymbol('O')]);
            }
        }
        let axes=axes.set_x_range(Fix(0.0), Fix(1.0));
        let axes=axes.set_y_range(Fix(0.0), Fix(2.0*PI));
        let show_ticks=vec![Major(0.0,Fix("0")),Major(0.5,Fix("π")),Major(1.0,Fix("2π"))];
        axes.set_x_ticks_custom(show_ticks.into_iter(),&[],&[]);
        let show_ticks=vec![Major(0.0,Fix("0")),Major(PI,Fix("π")),Major(2.0*PI,Fix("2π"))];
        axes.set_y_ticks_custom(show_ticks.into_iter(),&[],&[]);
        let mut pdf_name=String::new();
        pdf_name.push_str("tests/BBH/wcc.pdf");
        fg.set_terminal("pdfcairo", &pdf_name);
        fg.show();
        //算一下边界态
        let green=surf_Green::from_Model(&model,0,1e-3);
        let E_min=-2.0;
        let E_max=2.0;
        let E_n=nk.clone();
        let path=[[0.0],[0.5],[1.0]];
        let path=arr2(&path);
        let label=vec!["G","X","G"];
        green.show_surf_state("tests/BBH",&path,&label,nk,E_min,E_max,E_n,0);


        //算一下corner state
        let num=10;
        let model_1=model.cut_piece(num,0);
        let new_model=model_1.cut_piece(2*num,1);
        /*
        let new_model=model.cut_dot(num,4,None);
        */
        let mut s=0;
        let start = Instant::now();
        let (band,evec)=new_model.solve_onek(&arr1(&[0.0,0.0]));
        println!("band shape is {:?}, evec shape is {:?}",band.shape(),evec.shape());
        let end = Instant::now();    // 结束计时
        let duration = end.duration_since(start); // 计算执行时间
        println!("solve_band_all took {} seconds", duration.as_secs_f64());   // 输出执行时间
        let nresults=band.len();
        let show_evec=evec.to_owned().map(|x| x.norm_sqr());
        let norb=new_model.norb;
        let size=show_evec;
        let show_str=new_model.atom.clone().dot(&model.lat);
        use std::fs::create_dir_all;
        create_dir_all("tests/BBH/corner").expect("can't creat the file");
        write_txt_1(band,"tests/BBH/corner/band.txt");
        write_txt(size,"tests/BBH/corner/evec.txt");
        write_txt(show_str,"tests/BBH/corner/structure.txt");
    }
}