RustQuant_math/optimization/gradient_descent.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// RustQuant: A Rust library for quantitative finance tools.
// Copyright (C) 2023 https://github.com/avhz
// Dual licensed under Apache 2.0 and MIT.
// See:
// - LICENSE-APACHE.md
// - LICENSE-MIT.md
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//! ## Gradient Descent Primer
//!
//! We want to implement an algorithm for solving uncostrained optimisation problems of the form:
//!
//! $$
//! \min_{x \in \mathbb{R}^n} f(x) \qquad f(x) \in \mathcal{C}^1
//! $$
//!
//! when the objective function $f(x)$ and its gradient, $\nabla f(x)$, are known.
//!
//! We start with an initial guess, $x_0$, and perform the iteration:
//!
//! $$
//! x_{k+1} = x_k + \alpha_k d_k = x_k - \alpha_k \nabla f(x_k)
//! $$
//!
//! Where:
//!
//! $$
//! d_k = -\nabla f(x_k) \qquad \text{is the descent direction}
//! $$
//!
//! and
//!
//! $$
//! \alpha_k \qquad \text{is the step size in iteration $k$}
//! $$
//!
//! This iteration gives us a monotonic sequence which converges to a local minimum, $f(x^*)$, if it exists:
//!
//! $$
//! f(x_0) \geq f(x_1) \geq f(x_2) \geq \cdots \geq f(x^*)
//! $$
//!
//! The algorithm is repeated until the stationarity condition is fulfilled:
//!
//! $$
//! \nabla f(x) = 0
//! $$
//!
//! Numerically, this condition is fulfilled if:
//!
//! $$
//! \| \nabla f(x_{k+1}) \| \leq \epsilon
//! $$
//!
//! Where $\|\cdot\|$ denotes the Euclidean norm:
//!
//! $$
//! \|x\| = \sqrt{\langle x,x \rangle}
//! $$
//!
//! Or in Rust, something like:
//!
//! ```ignore
//! gradient.iter().map(|&x| x * x).sum::<f64>().sqrt() < std::f64::EPSILON.sqrt()
//! ```
//!
//! See [this example](https://github.com/avhz/RustQuant/blob/main/examples/gradient_descent.rs)
//! for a demonstration using Himmelblau's function:
//!
//! $$
//! f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2
//! $$
use std::time::{Duration, Instant};
use RustQuant_autodiff::{variable::Variable, Accumulate, Gradient, Graph};
// use ::log::{info, max_level, warn, Level};
/// Gradient descent optimizer.
/// NOTE: Only for functions $f: \mathbb{R}^n \rightarrow \mathbb{R}$ for now.
/// The gradient descent optimizer is an iterative algorithm that
/// finds the local minimum of a function.
/// The algorithm starts with an initial guess for the local minimum
/// and moves iteratively in the direction of the negative gradient
/// until the gradient is close to zero.
#[derive(Default, Debug, Clone)]
pub struct GradientDescent {
/// Learning rate (aka. alpha or eta).
pub learning_rate: f64,
/// Maximum number of iterations.
pub max_iterations: usize,
/// Tolerance for the gradient.
pub tolerance: Option<f64>,
}
/// Result of the gradient descent optimization.
#[allow(clippy::module_name_repetitions)]
pub struct GradientDescentResult {
/// Minimizer of the function.
pub minimizer: Vec<f64>,
/// Value of the function at the minimum.
pub minimum: f64,
/// Number of iterations.
pub iterations: usize,
/// Time elapsed during optimization.
pub elapsed: Duration,
}
impl GradientDescent {
/// Returns a new instance of the gradient descent optimizer.
///
/// # Panics
///
/// Panics if tolerance is not positive.
#[must_use]
pub fn new(learning_rate: f64, max_iterations: usize, tolerance: Option<f64>) -> Self {
if tolerance.is_some() {
assert!(tolerance.unwrap() > 0.0);
}
Self {
learning_rate,
max_iterations,
tolerance,
}
}
/// Checks if the gradient is equal to zero.
/// This is a necessary condition for a local minimum.
#[inline]
fn is_stationary(gradient: &[f64], tol: f64) -> bool {
gradient.iter().map(|&x| x * x).sum::<f64>().sqrt() < tol
}
/// Compute Euclidean norm of a vector.
#[inline]
fn norm(x: &[f64]) -> f64 {
x.iter().map(|&x| x * x).sum::<f64>().sqrt()
}
// /// Compute the dot product of two vectors.
// fn dot(x: &[f64], y: &[f64]) -> f64 {
// x.iter().zip(y.iter()).map(|(&x, &y)| x * y).sum()
// }
/// Performs gradient descent optimization.
#[allow(clippy::assign_op_pattern)]
pub fn optimize<F>(&self, f: F, x0: &[f64], verbose: bool) -> GradientDescentResult
where
F: for<'v> Fn(&[Variable<'v>]) -> Variable<'v>,
{
let start = Instant::now();
let tolerance = self.tolerance.unwrap_or(f64::EPSILON.sqrt());
let mut result = GradientDescentResult {
minimum: 0.0,
minimizer: x0.to_vec(),
iterations: 0,
elapsed: start.elapsed(),
};
for k in 0..self.max_iterations {
let graph = Graph::new();
result.iterations = k + 1;
let location = graph.vars(&result.minimizer);
let function = f(&location);
let gradient = function.accumulate().wrt(&location);
if Self::is_stationary(&gradient, tolerance) {
break;
}
// for (xi, gi) in result.minimizer.iter_mut().zip(&gradient) {
// // Cannot use -= since it is not implemented for `Variable`.
// *xi = (*xi) - self.learning_rate * (*gi);
// }
result
.minimizer
.iter_mut()
.zip(&gradient)
.for_each(|(xi, gi)| *xi = *xi - self.learning_rate * gi);
result.minimum = f(&location).value;
if verbose {
println!(
"Iter: {:?}, Norm: {}, Func: {:.4?}, X: {:.4?}",
k + 1,
Self::norm(&gradient),
function.value,
location.iter().map(|x| x.value).collect::<Vec<f64>>()
);
}
// if max_level() == Level::Info {
// info!(
// "Iter: {:?}, Norm: {}, Func: {:.4?}, X: {:.4?}",
// k + 1,
// Self::norm(&gradient),
// function.value,
// location.iter().map(|x| x.value),
// );
// }
}
result.elapsed = start.elapsed();
result
}
}
#[cfg(test)]
mod test_gradient_descent {
use super::*;
use RustQuant_autodiff::overload::Powf;
use RustQuant_autodiff::variable::Variable;
// Test the creation of a new GradientDescent optimizer.
#[test]
fn test_gradient_descent_new() {
let gd = GradientDescent::new(0.1, 1000, Some(0.0001));
assert_eq!(gd.learning_rate, 0.1);
assert_eq!(gd.max_iterations, 1000);
assert_eq!(gd.tolerance, Some(0.0001));
}
// Test the is_stationary function.
#[test]
fn test_is_stationary() {
assert!(GradientDescent::is_stationary(&[0.00001, 0.00001], 0.0001));
assert!(!GradientDescent::is_stationary(&[0.01, 0.01], 0.0001));
}
// Test the norm function.
#[test]
fn test_norm() {
// let graph = graph::new();
// let vars = graph.vars(&vec![3.0, 4.0]);
assert_eq!(GradientDescent::norm(&[3.0, 4.0]), 5.0);
}
// Test the optimize function on x^2.
#[test]
fn test_optimize_x_squared() {
// Function: f(x) = x^2
// Gradient: f'(x) = 2x
// Minimum: f(0) = 0
fn f<'v>(x: &[Variable<'v>]) -> Variable<'v> {
x[0] * x[0]
}
// GradientDescent::new(learning_rate, max_iterations, tolerance)
let gd = GradientDescent::new(0.1, 1000, Some(0.000_001));
let result = gd.optimize(f, &[10.0], false);
println!("Minimum: {:?}", result.minimum);
println!("Minimizer: {:?}", result.minimizer);
println!("Iterations: {:?}", result.iterations);
println!("Elapsed: {:?}", result.elapsed);
}
// Test the optimize function on Booth function.
// Function: f(x,y) = (x + 2y - 7)^2 + (2x + y - 5)^2
// Gradient: f'(x,y) = [2(x + 2y - 7) + 4(2x + y - 5),
// 4(x + 2y - 7) + 2(2x + y - 5)]
// Minimum: f(1, 3) = 0
#[test]
fn test_optimize_booth() {
fn f<'v>(variables: &[Variable<'v>]) -> Variable<'v> {
let x = variables[0];
let y = variables[1];
(x + 2. * y - 7.).powf(2.0) + (2. * x + y - 5.).powf(2.0)
}
// GradientDescent::new(learning_rate, max_iterations, tolerance)
let gd = GradientDescent::new(0.1, 1000, Some(0.000_001));
let result = gd.optimize(f, &[5.0, 5.0], false);
println!("Minimum: {:?}", result.minimum);
println!("Minimizer: {:?}", result.minimizer);
println!("Iterations: {:?}", result.iterations);
}
// Test the optimize function on Rosenbrock function (a = 1, b = 100, n = 2).
// Function: f(x,y) = (1 - x)^2 + 100(y - x^2)^2
// Gradient: f'(x,y) = [-2(1 - x) - 400x(y - x^2),
// 200(y - x^2)]
// Minimum: f(1, 1) = 0
#[test]
fn test_optimize_rosenbrock() {
fn f<'v>(variables: &[Variable<'v>]) -> Variable<'v> {
let x = variables[0];
let y = variables[1];
(1. - x).powf(2.0) + 100. * (y - x.powf(2.0)).powf(2.0)
}
// GradientDescent::new(learning_rate, max_iterations, tolerance)
let gd = GradientDescent::new(0.001, 10000, Some(0.000_001));
let result = gd.optimize(f, &[0.0, 5.0], false);
println!("Minimum: {:?}", result.minimum);
println!("Minimizer: {:?}", result.minimizer);
println!("Iterations: {:?}", result.iterations);
}
// Test the optimize function on Himmelblau function.
// Test the optimize function on Beale function.
}