quantcrypt/asn1/cert_builder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
use std::error::Error;
use std::str::FromStr;
use chrono::{DateTime, Datelike, TimeZone, Timelike};
use pkcs8::spki::SubjectPublicKeyInfo;
use rand::RngCore;
use rand_core::OsRng;
use x509_cert::builder::Builder;
pub use x509_cert::builder::Profile;
use x509_cert::ext::AsExtension;
use x509_cert::time::Time;
use x509_cert::{name::Name, serial_number::SerialNumber, time::Validity};
use crate::{errors::QuantCryptError, keys::PrivateKey, keys::PublicKey};
use crate::asn1::certificate::Certificate;
type Result<T> = std::result::Result<T, QuantCryptError>;
/// A struct to hold the validity period of a certificate
#[derive(Clone)]
pub struct CertValidity {
/// The not before date of the certificate
pub not_before: der::asn1::UtcTime,
/// The not after date of the certificate
pub not_after: der::asn1::UtcTime,
}
impl CertValidity {
fn date_time_to_asn(
time: &DateTime<chrono::Utc>,
) -> std::result::Result<der::asn1::UtcTime, Box<dyn Error>> {
let dt = der::DateTime::new(
time.year() as u16,
time.month() as u8,
time.day() as u8,
time.hour() as u8,
time.minute() as u8,
time.second() as u8,
)?;
let result = der::asn1::UtcTime::from_date_time(dt)?;
Ok(result)
}
/// Create a new CertValidity struct
///
/// # Arguments
///
/// * `not_before` - The not before date of the certificate. If None, the current time is used. The date should be in RFC3339 format.
/// * `not_after` - The not after date of the certificate. The date should be in RFC3339 format.
///
/// # Returns
///
/// A new CertValidity struct
///
/// # Errors
///
/// `QuantCryptError::InvalidNotBefore` if the not before date is in the future
/// `QuantCryptError::InvalidNotAfter` if the not after date is in the past
pub fn new(not_before: Option<&str>, not_after: &str) -> Result<CertValidity> {
let not_after = DateTime::parse_from_rfc3339(not_after)
.map_err(|_| QuantCryptError::InvalidNotAfter)?;
// Set time to UTC
let not_after = chrono::Utc.from_utc_datetime(¬_after.naive_utc());
// Check if not after is in the past
if not_after <= chrono::Utc::now() {
return Err(QuantCryptError::InvalidNotAfter);
}
let not_after_dt = CertValidity::date_time_to_asn(¬_after)
.map_err(|_| QuantCryptError::InvalidNotAfter)?;
if let Some(not_before) = not_before {
let not_before = DateTime::parse_from_rfc3339(not_before)
.map_err(|_| QuantCryptError::InvalidNotBefore)?;
// Set time to UTC
let not_before = chrono::Utc.from_utc_datetime(¬_before.naive_utc());
if not_before > not_after {
return Err(QuantCryptError::InvalidNotBefore);
}
let not_before_dt = CertValidity::date_time_to_asn(¬_before)
.map_err(|_| QuantCryptError::InvalidNotBefore)?;
Ok(CertValidity {
not_before: not_before_dt,
not_after: not_after_dt,
})
} else {
// Use now as not_before
let not_before = chrono::Utc::now();
if not_before > not_after {
return Err(QuantCryptError::InvalidNotAfter);
}
let not_before_dt = CertValidity::date_time_to_asn(¬_before)
.map_err(|_| QuantCryptError::InvalidNotBefore)?;
Ok(CertValidity {
not_before: not_before_dt,
not_after: not_after_dt,
})
}
}
}
/// A builder for creating X.509 certificates
///
/// # Example:
/// ```
/// use quantcrypt::certificates::CertificateBuilder;
/// use quantcrypt::dsas::DsaAlgorithm;
/// use quantcrypt::kems::KemAlgorithm;
/// use quantcrypt::certificates::Profile;
/// use quantcrypt::dsas::DsaKeyGenerator;
/// use quantcrypt::kems::KemKeyGenerator;
/// use quantcrypt::certificates::CertValidity;
///
/// // Create a TA key pair
/// let (pk_root, sk_root) = DsaKeyGenerator::new(DsaAlgorithm::MlDsa44).generate().unwrap();
///
/// let profile = Profile::Root;
/// let serial_no = None; // This will generate a random serial number
/// let validity = CertValidity::new(None, "2035-01-01T00:00:00Z").unwrap(); // Not before is now
/// let subject = "CN=example.com".to_string();
/// let cert_public_key = pk_root.clone();
/// let signer = &sk_root;
///
/// // Create the TA certificate builder
/// let builder = CertificateBuilder::new(
/// profile,
/// serial_no,
/// validity.clone(),
/// subject.clone(),
/// cert_public_key,
/// signer).unwrap();
/// let cert_root = builder.build().unwrap();
/// assert!(cert_root.verify_self_signed().unwrap());
/// // Create a leaf (EE) key pair for KEM
/// let (pk_kem, sk_kem) = KemKeyGenerator::new(KemAlgorithm::MlKem512).generate().unwrap();
/// let builder = CertificateBuilder::new(Profile::Leaf {
/// issuer: cert_root.get_subject(),
/// enable_key_agreement: false,
/// enable_key_encipherment: true,
/// }, serial_no,
/// validity,
/// subject,
/// pk_kem,
/// signer).unwrap();
/// let cert_kem = builder.build().unwrap();
///
/// // It's not self signed so verification as self signed should fail
/// assert!(!cert_kem.verify_self_signed().unwrap());
///
/// // But it should verify against the root
/// assert!(cert_root.verify_child(&cert_kem).unwrap());
/// ```
pub struct CertificateBuilder<'a> {
builder: x509_cert::builder::CertificateBuilder<'a, PrivateKey>,
}
impl<'a> CertificateBuilder<'a> {
/// Create a new certificate builder
pub fn new(
profile: Profile,
serial_number: Option<[u8; 20]>,
validity: CertValidity,
subject: String,
cert_public_key: PublicKey,
signer: &'a PrivateKey,
) -> Result<CertificateBuilder<'a>> {
let subject = Name::from_str(&subject).map_err(|_| QuantCryptError::BadSubject)?;
let spki = SubjectPublicKeyInfo::from_key(cert_public_key)
.map_err(|_| QuantCryptError::BadPublicKey)?;
let validity = Validity {
not_before: Time::UtcTime(validity.not_before),
not_after: Time::UtcTime(validity.not_after),
};
let serial_number = if let Some(serial_number) = serial_number {
SerialNumber::new(&serial_number).map_err(|_| QuantCryptError::BadSerialNumber)?
} else {
CertificateBuilder::get_random_serial()?
};
let builder = x509_cert::builder::CertificateBuilder::new(
profile,
serial_number,
validity,
subject,
spki,
signer,
)
.map_err(|_| QuantCryptError::Unknown)?;
Ok(CertificateBuilder { builder })
}
pub fn add_extension(&mut self, extension: impl AsExtension) -> Result<&mut Self> {
self.builder
.add_extension(&extension)
.map_err(|_| QuantCryptError::BadExtension)?;
Ok(self)
}
/// Return a random SerialNumber value
fn get_random_serial() -> Result<SerialNumber> {
let mut serial = [0u8; 20];
OsRng.fill_bytes(&mut serial);
serial[0] = 0x01;
let serial = SerialNumber::new(&serial).map_err(|_| QuantCryptError::BadSerialNumber)?;
Ok(serial)
}
pub fn build(self) -> Result<Certificate> {
let cert_inner = self.builder.build().map_err(|_| QuantCryptError::Unknown)?;
let cert = Certificate::new(cert_inner);
Ok(cert)
}
}
#[cfg(test)]
mod test {
use crate::{dsas::DsaAlgorithm, dsas::DsaKeyGenerator};
use super::*;
#[test]
fn gen_pq_hackathon_artifacts() {
// For composite ML-DSA algorithm only
let dsa_algs: Vec<DsaAlgorithm> = vec![
DsaAlgorithm::MlDsa44,
DsaAlgorithm::MlDsa65,
DsaAlgorithm::MlDsa87,
DsaAlgorithm::MlDsa44Rsa2048PssSha256,
DsaAlgorithm::MlDsa44Rsa2048Pkcs15Sha256,
DsaAlgorithm::MlDsa44Ed25519SHA512,
DsaAlgorithm::MlDsa44EcdsaP256SHA256,
DsaAlgorithm::MlDsa44EcdsaBrainpoolP256r1SHA256,
DsaAlgorithm::MlDsa65Rsa3072PssSHA512,
DsaAlgorithm::MlDsa65Rsa3072Pkcs15SHA512,
DsaAlgorithm::MlDsa65EcdsaP256SHA512,
DsaAlgorithm::MlDsa65EcdsaBrainpoolP256r1SHA512,
DsaAlgorithm::MlDsa65Ed25519SHA512,
DsaAlgorithm::MlDsa87EcdsaP384SHA512,
DsaAlgorithm::MlDsa87EcdsaBrainpoolP384r1SHA512,
DsaAlgorithm::MlDsa87Ed448SHA512,
];
for dsa_alg in dsa_algs.iter() {
// Use DSA to generate key pair for Trust authority
let (pk_root, sk_root) = DsaKeyGenerator::new(*dsa_alg).generate().unwrap();
let profile = Profile::Root;
let serial_no = None; // This will generate a random serial number
let validity = CertValidity::new(None, "2034-01-01T00:00:00Z").unwrap(); // Not before is now
let subject = "CN=example.com".to_string();
let cert_public_key = pk_root.clone();
let signer = &sk_root;
// Create the TA certificate builder
// This is a self-signed certificate since cert_public_key and signer are both from the root
let builder = CertificateBuilder::new(
profile,
serial_no,
validity.clone(),
subject.clone(),
cert_public_key,
signer,
)
.unwrap();
let cert_root = builder.build().unwrap();
// Verify self-sign cert
assert!(cert_root.verify_self_signed().unwrap());
let dsa_alg_name = &dsa_alg.to_string();
let file_name = format!(
"artifacts/certs/{}-{}_ta.der",
dsa_alg_name,
dsa_alg.get_oid()
);
// // Write the self-signed certificate from TA to the temp directory
cert_root.to_der_file(&file_name).unwrap();
}
}
}