rgsl/
gegenbauer.rs

1//
2// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
3//
4
5//! The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where they are known as Ultraspherical polynomials.
6
7use crate::{types, Value};
8use std::mem::MaybeUninit;
9
10/// This function evaluates the Gegenbauer polynomials C^{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.
11#[doc(alias = "gsl_sf_gegenpoly_1")]
12pub fn gegenpoly_1(lambda: f64, x: f64) -> f64 {
13    unsafe { sys::gsl_sf_gegenpoly_1(lambda, x) }
14}
15
16/// This function evaluates the Gegenbauer polynomials C^{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.
17#[doc(alias = "gsl_sf_gegenpoly_2")]
18pub fn gegenpoly_2(lambda: f64, x: f64) -> f64 {
19    unsafe { sys::gsl_sf_gegenpoly_2(lambda, x) }
20}
21
22/// This function evaluates the Gegenbauer polynomials C^{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.
23#[doc(alias = "gsl_sf_gegenpoly_3")]
24pub fn gegenpoly_3(lambda: f64, x: f64) -> f64 {
25    unsafe { sys::gsl_sf_gegenpoly_3(lambda, x) }
26}
27
28/// This function evaluates the Gegenbauer polynomials C^{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.
29#[doc(alias = "gsl_sf_gegenpoly_1_e")]
30pub fn gegenpoly_1_e(lambda: f64, x: f64) -> Result<types::Result, Value> {
31    let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
32    let ret = unsafe { sys::gsl_sf_gegenpoly_1_e(lambda, x, result.as_mut_ptr()) };
33
34    result_handler!(ret, unsafe { result.assume_init() }.into())
35}
36
37/// This function evaluates the Gegenbauer polynomials C^{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.
38#[doc(alias = "gsl_sf_gegenpoly_2_e")]
39pub fn gegenpoly_2_e(lambda: f64, x: f64) -> Result<types::Result, Value> {
40    let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
41    let ret = unsafe { sys::gsl_sf_gegenpoly_2_e(lambda, x, result.as_mut_ptr()) };
42
43    result_handler!(ret, unsafe { result.assume_init() }.into())
44}
45
46/// This function evaluates the Gegenbauer polynomials C^{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.
47#[doc(alias = "gsl_sf_gegenpoly_3_e")]
48pub fn gegenpoly_3_e(lambda: f64, x: f64) -> Result<types::Result, Value> {
49    let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
50    let ret = unsafe { sys::gsl_sf_gegenpoly_3_e(lambda, x, result.as_mut_ptr()) };
51
52    result_handler!(ret, unsafe { result.assume_init() }.into())
53}
54
55/// This function evaluates the Gegenbauer polynomial C^{(\lambda)}_n(x) for a specific value of n, lambda, x subject to \lambda > -1/2, n >= 0.
56#[doc(alias = "gsl_sf_gegenpoly_n")]
57pub fn gegenpoly_n(n: i32, lambda: f64, x: f64) -> f64 {
58    unsafe { sys::gsl_sf_gegenpoly_n(n, lambda, x) }
59}
60
61/// This function evaluates the Gegenbauer polynomial C^{(\lambda)}_n(x) for a specific value of n, lambda, x subject to \lambda > -1/2, n >= 0.
62#[doc(alias = "gsl_sf_gegenpoly_n_e")]
63pub fn gegenpoly_n_e(n: i32, lambda: f64, x: f64) -> Result<types::Result, Value> {
64    let mut result = MaybeUninit::<sys::gsl_sf_result>::uninit();
65    let ret = unsafe { sys::gsl_sf_gegenpoly_n_e(n, lambda, x, result.as_mut_ptr()) };
66
67    result_handler!(ret, unsafe { result.assume_init() }.into())
68}
69
70/// This function computes an array of Gegenbauer polynomials C^{(\lambda)}_n(x) for n = 0, 1, 2, \dots, nmax, subject to \lambda > -1/2, nmax >= 0.
71#[doc(alias = "gsl_sf_gegenpoly_array")]
72pub fn gegenpoly_array(lambda: f64, x: f64, result_array: &mut [f64]) -> Result<(), Value> {
73    let ret = unsafe {
74        sys::gsl_sf_gegenpoly_array(
75            result_array.len() as _,
76            lambda,
77            x,
78            result_array.as_mut_ptr(),
79        )
80    };
81    result_handler!(ret, ())
82}