Module exponential_integrals Copy item path Source Chi This routine computes the integral Chi(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t] , where \gamma_E is the Euler constant (available as the macro M_EULER). Chi_e This routine computes the integral Chi(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t] , where \gamma_E is the Euler constant (available as the macro M_EULER). Ci This routine computes the Cosine integral Ci(x) = -\int_x^\infty dt \cos(t)/t for x > 0. Ci_e This routine computes the Cosine integral Ci(x) = -\int_x^\infty dt \cos(t)/t for x > 0. E1 This routine computes the exponential integral E_1(x), E2 This routine computes the second-order exponential integral E_2(x), E1_e This routine computes the exponential integral E_1(x), E2_e This routine computes the second-order exponential integral E_2(x), Ei This routine computes the exponential integral Ei(x), Ei_e This routine computes the exponential integral Ei(x), En This routine computes the exponential integral E_n(x) of order n, En_e This routine computes the exponential integral E_n(x) of order n, Shi This routine computes the integral Shi(x) = \int_0^x dt \sinh(t)/t. Shi_e This routine computes the integral Shi(x) = \int_0^x dt \sinh(t)/t. Si This routine computes the Sine integral Si(x) = \int_0^x dt \sin(t)/t. Si_e This routine computes the Sine integral Si(x) = \int_0^x dt \sin(t)/t. _3 This routine computes the third-order exponential integral Ei_3(x) = \int_0^xdt \exp(-t^3) for x >= 0. _3_e This routine computes the third-order exponential integral Ei_3(x) = \int_0^xdt \exp(-t^3) for x >= 0. atanint This routine computes the Arctangent integral, which is defined as AtanInt(x) = \int_0^x dt \arctan(t)/t. atanint_e This routine computes the Arctangent integral, which is defined as AtanInt(x) = \int_0^x dt \arctan(t)/t.