Module exponential_integrals

Module exponential_integrals 

Source

Functionsยง

Chi
This routine computes the integral Chi(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t] , where \gamma_E is the Euler constant (available as the macro M_EULER).
Chi_e
This routine computes the integral Chi(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t] , where \gamma_E is the Euler constant (available as the macro M_EULER).
Ci
This routine computes the Cosine integral Ci(x) = -\int_x^\infty dt \cos(t)/t for x > 0.
Ci_e
This routine computes the Cosine integral Ci(x) = -\int_x^\infty dt \cos(t)/t for x > 0.
E1
This routine computes the exponential integral E_1(x),
E2
This routine computes the second-order exponential integral E_2(x),
E1_e
This routine computes the exponential integral E_1(x),
E2_e
This routine computes the second-order exponential integral E_2(x),
Ei
This routine computes the exponential integral Ei(x),
Ei_e
This routine computes the exponential integral Ei(x),
En
This routine computes the exponential integral E_n(x) of order n,
En_e
This routine computes the exponential integral E_n(x) of order n,
Shi
This routine computes the integral Shi(x) = \int_0^x dt \sinh(t)/t.
Shi_e
This routine computes the integral Shi(x) = \int_0^x dt \sinh(t)/t.
Si
This routine computes the Sine integral Si(x) = \int_0^x dt \sin(t)/t.
Si_e
This routine computes the Sine integral Si(x) = \int_0^x dt \sin(t)/t.
_3
This routine computes the third-order exponential integral Ei_3(x) = \int_0^xdt \exp(-t^3) for x >= 0.
_3_e
This routine computes the third-order exponential integral Ei_3(x) = \int_0^xdt \exp(-t^3) for x >= 0.
atanint
This routine computes the Arctangent integral, which is defined as AtanInt(x) = \int_0^x dt \arctan(t)/t.
atanint_e
This routine computes the Arctangent integral, which is defined as AtanInt(x) = \int_0^x dt \arctan(t)/t.