Expand description
The Debye functions D_n(x) are defined by the following integral,
D_n(x) = n/x^n \int_0^x dt (t^n/(e^t - 1))
For further information see Abramowitz & Stegun, Section 27.1. !
Functionsยง
- _1
- This routine computes the first-order Debye function D_1(x) = (1/x) \int_0^x dt (t/(e^t - 1)).
- _2
- This routine computes the second-order Debye function D_2(x) = (2/x^2) \int_0^x dt (t^2/(e^t - 1)).
- _3
- This routine computes the third-order Debye function D_3(x) = (3/x^3) \int_0^x dt (t^3/(e^t - 1)).
- _4
- This routine computes the fourth-order Debye function D_4(x) = (4/x^4) \int_0^x dt (t^4/(e^t - 1)).
- _5
- This routine computes the fifth-order Debye function D_5(x) = (5/x^5) \int_0^x dt (t^5/(e^t - 1)).
- _6
- This routine computes the sixth-order Debye function D_6(x) = (6/x^6) \int_0^x dt (t^6/(e^t - 1)).
- _1_e
- This routine computes the first-order Debye function D_1(x) = (1/x) \int_0^x dt (t/(e^t - 1)).
- _2_e
- This routine computes the second-order Debye function D_2(x) = (2/x^2) \int_0^x dt (t^2/(e^t - 1)).
- _3_e
- This routine computes the third-order Debye function D_3(x) = (3/x^3) \int_0^x dt (t^3/(e^t - 1)).
- _4_e
- This routine computes the fourth-order Debye function D_4(x) = (4/x^4) \int_0^x dt (t^4/(e^t - 1)).
- _5_e
- This routine computes the fifth-order Debye function D_5(x) = (5/x^5) \int_0^x dt (t^5/(e^t - 1)).
- _6_e
- This routine computes the sixth-order Debye function D_6(x) = (6/x^6) \int_0^x dt (t^6/(e^t - 1)).