Struct rgsl::types::complex::ComplexF32

source ·
#[repr(C)]
pub struct ComplexF32 { pub dat: [f32; 2], }

Fields§

§dat: [f32; 2]

Implementations§

This function uses the rectangular Cartesian components (x,y) to return the complex number z = x + i y.

This function returns the complex number z = r \exp(i \theta) = r (\cos(\theta) + i \sin(\theta)) from the polar representation (r,theta).

This function returns the argument of the complex number z, \arg(z), where -\pi < \arg(z) <= \pi.

This function returns the magnitude of the complex number z, |z|.

This function returns the squared magnitude of the complex number z, |z|^2.

This function returns the natural logarithm of the magnitude of the complex number z, \log|z|.

It allows an accurate evaluation of \log|z| when |z| is close to one. The direct evaluation of log(gsl_complex_abs(z)) would lead to a loss of precision in this case.

This function returns the sum of the complex numbers a and b, z=a+b.

This function returns the difference of the complex numbers a and b, z=a-b.

This function returns the product of the complex numbers a and b, z=ab.

This function returns the quotient of the complex numbers a and b, z=a/b.

This function returns the sum of the complex number a and the real number x, z=a+x.

This function returns the difference of the complex number a and the real number x, z=a-x.

This function returns the product of the complex number a and the real number x, z=ax.

This function returns the quotient of the complex number a and the real number x, z=a/x.

This function returns the sum of the complex number a and the imaginary number iy, z=a+iy.

This function returns the difference of the complex number a and the imaginary number iy, z=a-iy.

This function returns the product of the complex number a and the imaginary number iy, z=a*(iy).

This function returns the quotient of the complex number a and the imaginary number iy, z=a/(iy).

This function returns the complex conjugate of the complex number z, z^* = x - i y.

This function returns the inverse, or reciprocal, of the complex number z, 1/z = (x - i y)/ (x^2 + y^2).

This function returns the negative of the complex number z, -z = (-x) + i(-y).

This function returns the square root of the complex number z, \sqrt z.

The branch cut is the negative real axis. The result always lies in the right half of the complex plane.

This function returns the complex square root of the real number x, where x may be negative.

The function returns the complex number z raised to the complex power a, z^a.

This is computed as \exp(\log(z)*a) using complex logarithms and complex exponentials.

This function returns the complex number z raised to the real power x, z^x.

This function returns the complex exponential of the complex number z, \exp(z).

This function returns the complex natural logarithm (base e) of the complex number z, \log(z). The branch cut is the negative real axis.

This function returns the complex base-10 logarithm of the complex number z, \log_10 (z).

This function returns the complex base-b logarithm of the complex number z, \log_b(z). This quantity is computed as the ratio \log(z)/\log(b).

This function returns the complex sine of the complex number z, \sin(z) = (\exp(iz) - \exp(-iz))/(2i).

This function returns the complex cosine of the complex number z, \cos(z) = (\exp(iz) + \exp(-iz))/2.

This function returns the complex tangent of the complex number z, \tan(z) = \sin(z)/\cos(z).

This function returns the complex secant of the complex number z, \sec(z) = 1/\cos(z).

This function returns the complex cosecant of the complex number z, \csc(z) = 1/\sin(z).

This function returns the complex cotangent of the complex number z, \cot(z) = 1/\tan(z).

This function returns the complex arcsine of the complex number z, \arcsin(z). The branch cuts are on the real axis, less than -1 and greater than 1.

This function returns the complex arcsine of the real number z, \arcsin(z).

  • For z between -1 and 1, the function returns a real value in the range [-\pi/2,\pi/2].
  • For z less than -1 the result has a real part of -\pi/2 and a positive imaginary part.
  • For z greater than 1 the result has a real part of \pi/2 and a negative imaginary part.

This function returns the complex arccosine of the complex number z, \arccos(z). The branch cuts are on the real axis, less than -1 and greater than 1.

This function returns the complex arccosine of the real number z, \arccos(z).

  • For z between -1 and 1, the function returns a real value in the range [0,\pi].
  • For z less than -1 the result has a real part of \pi and a negative imaginary part.
  • For z greater than 1 the result is purely imaginary and positive.

This function returns the complex arctangent of the complex number z, \arctan(z). The branch cuts are on the imaginary axis, below -i and above i.

This function returns the complex arcsecant of the complex number z, \arcsec(z) = \arccos(1/z).

This function returns the complex arcsecant of the real number z, \arcsec(z) = \arccos(1/z).

This function returns the complex arccosecant of the complex number z, \arccsc(z) = \arcsin(1/z).

This function returns the complex arccosecant of the real number z, \arccsc(z) = \arcsin(1/z).

This function returns the complex arccotangent of the complex number z, \arccot(z) = \arctan(1/z).

This function returns the complex hyperbolic sine of the complex number z, \sinh(z) = (\exp(z) - \exp(-z))/2.

This function returns the complex hyperbolic cosine of the complex number z, \cosh(z) = (\exp(z) + \exp(-z))/2.

This function returns the complex hyperbolic tangent of the complex number z, \tanh(z) = \sinh(z)/\cosh(z).

This function returns the complex hyperbolic secant of the complex number z, \sech(z) = 1/\cosh(z).

This function returns the complex hyperbolic cosecant of the complex number z, \csch(z) = 1/\sinh(z).

This function returns the complex hyperbolic cotangent of the complex number z, \coth(z) = 1/\tanh(z).

This function returns the complex hyperbolic arcsine of the complex number z, \arcsinh(z). The branch cuts are on the imaginary axis, below -i and above i.

This function returns the complex hyperbolic arccosine of the complex number z, \arccosh(z).

The branch cut is on the real axis, less than 1.

Note that in this case we use the negative square root in formula 4.6.21 of Abramowitz & Stegun giving \arccosh(z)=\log(z-\sqrt{z^2-1}).

This function returns the complex hyperbolic arccosine of the real number z, \arccosh(z).

This function returns the complex hyperbolic arctangent of the complex number z, arctanh(z).

The branch cuts are on the real axis, less than -1 and greater than 1.

This function returns the complex hyperbolic arctangent of the real number z, \arctanh(z).

This function returns the complex hyperbolic arcsecant of the complex number z, \arcsech(z) = \arccosh(1/z).

This function returns the complex hyperbolic arccosecant of the complex number z, \arccsch(z) = \arcsin(1/z).

This function returns the complex hyperbolic arccotangent of the complex number z, \arccoth(z) = \arctanh(1/z).

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.