Module rgsl::gegenbauer [] [src]

The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where they are known as Ultraspherical polynomials.

Functions

gegenpoly_1

This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.

gegenpoly_2

This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.

gegenpoly_3

This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.

gegenpoly_1_e

This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.

gegenpoly_2_e

This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.

gegenpoly_3_e

This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.

gegenpoly_array

This function computes an array of Gegenbauer polynomials C{(\lambda)}_n(x) for n = 0, 1, 2, \dots, nmax, subject to \lambda > -1/2, nmax >= 0.

gegenpoly_n

This function evaluates the Gegenbauer polynomial C{(\lambda)}_n(x) for a specific value of n, lambda, x subject to \lambda > -1/2, n >= 0.

gegenpoly_n_e

This function evaluates the Gegenbauer polynomial C{(\lambda)}_n(x) for a specific value of n, lambda, x subject to \lambda > -1/2, n >= 0.