Module rgsl::gegenbauer
[−]
[src]
The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where they are known as Ultraspherical polynomials.
Functions
gegenpoly_1 |
This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3. |
gegenpoly_2 |
This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3. |
gegenpoly_3 |
This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3. |
gegenpoly_1_e |
This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3. |
gegenpoly_2_e |
This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3. |
gegenpoly_3_e |
This function evaluates the Gegenbauer polynomials C{(\lambda)}_n(x) using explicit representations for n =1, 2, 3. |
gegenpoly_array |
This function computes an array of Gegenbauer polynomials C{(\lambda)}_n(x) for n = 0, 1, 2, \dots, nmax, subject to \lambda > -1/2, nmax >= 0. |
gegenpoly_n |
This function evaluates the Gegenbauer polynomial C{(\lambda)}_n(x) for a specific value of n, lambda, x subject to \lambda > -1/2, n >= 0. |
gegenpoly_n_e |
This function evaluates the Gegenbauer polynomial C{(\lambda)}_n(x) for a specific value of n, lambda, x subject to \lambda > -1/2, n >= 0. |