1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
#Nonlinear Least-Squares Fitting

This chapter describes functions for multidimensional nonlinear least-squares fitting. The library provides low level components for a 
variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to 
the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime 
without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in 
multi-threaded programs.

##Overview

The problem of multidimensional nonlinear least-squares fitting requires the minimization of the squared residuals of n functions, f_i, in 
p parameters, x_i,

\Phi(x) = (1/2) || F(x) ||^2
        = (1/2) \sum_{i=1}^{n} f_i(x_1, ..., x_p)^2 
All algorithms proceed from an initial guess using the linearization,

\psi(p) = || F(x+p) || ~=~ || F(x) + J p ||
where x is the initial point, p is the proposed step and J is the Jacobian matrix J_{ij} = d f_i / d x_j. Additional strategies are used to 
enlarge the region of convergence. These include requiring a decrease in the norm ||F|| on each step or using a trust region to avoid steps 
which fall outside the linear regime.

To perform a weighted least-squares fit of a nonlinear model Y(x,t) to data (t_i, y_i) with independent Gaussian errors \sigma_i, use 
function components of the following form,

f_i = (Y(x, t_i) - y_i) / \sigma_i
Note that the model parameters are denoted by x in this chapter since the non-linear least-squares algorithms are described geometrically 
(i.e. finding the minimum of a surface). The independent variable of any data to be fitted is denoted by t.

With the definition above the Jacobian is J_{ij} =(1 / \sigma_i) d Y_i / d x_j, where Y_i = Y(x,t_i).

##High Level Driver

These routines provide a high level wrapper that combine the iteration and convergence testing for easy use.
!*/

use ffi;
use num::Float;
use libc::c_void;

pub struct MultiFitFunction<'r, T:'r> {
    pub f: fn(x: &::VectorF64, params: &mut T, f: &::VectorF64) -> ::Value,
    /// number of functions
    pub n: usize,
    /// number of independent variables
    pub p: usize,
    pub params: &'r mut T
}

pub struct MultiFitFdfSolver<'r, T:'r> {
    _type: &'r MultiFitFdfSolverType<T>,
    fdf: *mut c_void, //MultiFitFunctionFdf<'r, T>,
    pub x: ::VectorF64,
    pub f: ::VectorF64,
    pub j: ::MatrixF64,
    pub dx: ::VectorF64,
    state: LmderStateT
}

impl<'r, T> MultiFitFdfSolver<'r, T> {
    /// This function returns a pointer to a newly allocated instance of a solver of type T for n observations and p parameters. The number
    /// of observations n must be greater than or equal to parameters p.
    pub fn new(_type: &'r MultiFitFdfSolverType<T>, n: usize, p: usize) -> Option<MultiFitFdfSolver<'r, T>> {
        let mut r = MultiFitFdfSolver {
            _type: _type,
            fdf: ::std::ptr::null_mut(),
            x: ::VectorF64::new(p).unwrap(),
            f: ::VectorF64::new(n).unwrap(),
            j: ::MatrixF64::new(n, p).unwrap(),
            dx: ::VectorF64::new(p).unwrap(),
            state: LmderStateT::new(n, p)
        };
        if ((*_type).alloc)(&mut r.state, n, p) == ::Value::Success {
            Some(r)
        } else {
            None
        }
    }

    /// This function initializes, or reinitializes, an existing solver s to use the function f and the initial guess x.
    pub fn set(&mut self, f: &mut MultiFitFunctionFdf<'r, T>, x: &::VectorF64) -> ::Value {
        if self.f.len() != f.n {
            rgsl_error!("function size does not match solver", ::Value::BadLen);
            return ::Value::BadLen;
        }

        if self.x.len() != x.len() {
            rgsl_error!("vector length does not match solver", ::Value::BadLen);
            return ::Value::BadLen;
        }  

        self.fdf = unsafe { ::std::mem::transmute(f) };
        self.x.copy_from(x);

        unsafe {
            (self._type.set)(&mut self.state, ::std::mem::transmute(self.fdf), &mut self.x, &mut self.f, &mut self.j, &mut self.dx)
        }
    }

    pub fn name(&self) -> &'static str {
        self._type.name
    }

    /// This function performs a single iteration of the solver s. If the iteration encounters an unexpected problem then an error code
    /// will be returned. The solver maintains a current estimate of the best-fit parameters at all times.
    pub fn iterate(&mut self) -> ::Value {
        unsafe {
            (self._type.iterate)(&mut self.state, ::std::mem::transmute(self.fdf), &mut self.x, &mut self.f, &mut self.j, &mut self.dx)
        }
    }

    /// This function returns the current position (i.e. best-fit parameters) s->x of the solver s.
    pub fn position(&'r self) -> &'r ::VectorF64 {
        &self.x
    }

    /// These functions iterate the solver s for a maximum of maxiter iterations. After each iteration, the system is tested for convergence
    /// using gsl_multifit_test_delta with the error tolerances epsabs and epsrel.
    #[allow(unused_assignments)]
    pub fn driver(&mut self, max_iter: usize, epsabs: f64, epsrel: f64) -> ::Value {
        let mut status = ::Value::Success;
        let mut iter = 0usize;

        loop {
            status = self.iterate();

            if status != ::Value::Success {
                break;
            }

            /* test for convergence */
            status = gsl_multifit_test_delta(&self.dx, &self.x, epsabs, epsrel);
            iter += 1;
            if status != ::Value::Continue || iter >= max_iter {
                break;
            }
        }

        status
    }
}

impl<'r, T> Drop for MultiFitFdfSolver<'r, T> {
    fn drop(&mut self) {
        //self.s = ::std::ptr::null_mut();
    }
}

#[allow(dead_code)]
pub struct MultiFitFdfSolverType<T> {
    name: &'static str,
    //size: usize,
    alloc: fn(state: &mut LmderStateT, n: usize, p: usize) -> ::Value,
    set: fn(state: &mut LmderStateT, fdf: &mut MultiFitFunctionFdf<T>, x: &mut ::VectorF64, f: &mut ::VectorF64, j: &mut ::MatrixF64,
        dx: &mut ::VectorF64) -> ::Value,
    iterate: fn(state: &mut LmderStateT, fdf: &mut MultiFitFunctionFdf<T>, x: &mut ::VectorF64, f: &mut ::VectorF64,
        j: &mut ::MatrixF64, dx: &mut ::VectorF64) -> ::Value,
    free: fn(state: &mut LmderStateT)
}

impl<T> MultiFitFdfSolverType<T> {
    pub fn lmder() -> MultiFitFdfSolverType<T> {
        MultiFitFdfSolverType {
            name: "lmder",
            alloc: lmder_alloc,
            set: lmder_set,
            iterate: lmder_iterate,
            free: lmder_free
        }
    }

    pub fn lmsder() -> MultiFitFdfSolverType<T> {
        MultiFitFdfSolverType {
            name: "lmsder",
            alloc: lmder_alloc,
            set: lmsder_set,
            iterate: lmder_iterate,
            free: lmder_free
        }
    }
}

pub struct MultiFitFunctionFdf<'r, T:'r> {
    pub f: fn(x: &::VectorF64, params: &mut T, f: &mut ::VectorF64) -> ::Value,
    pub df: Option<fn(x: &::VectorF64, params: &mut T, df: &mut ::MatrixF64) -> ::Value>,
    pub fdf: Option<fn(x: &::VectorF64, params: &mut T, f: &mut ::VectorF64, df: &mut ::MatrixF64) -> ::Value>,
    pub n: usize,
    pub p: usize,
    pub params: &'r mut T
}

struct LmderStateT {
    iter: usize,
    xnorm: f64,
    fnorm: f64,
    delta: f64,
    par: f64,
    r: ::MatrixF64,
    tau: ::VectorF64,
    diag: ::VectorF64,
    qtf: ::VectorF64,
    newton: ::VectorF64,
    gradient: ::VectorF64,
    x_trial: ::VectorF64,
    f_trial: ::VectorF64,
    df: ::VectorF64,
    sdiag: ::VectorF64,
    rptdx: ::VectorF64,
    w: ::VectorF64,
    work1: ::VectorF64,
    perm: ::Permutation
}

impl LmderStateT {
    fn new(n: usize, p: usize) -> LmderStateT {
        LmderStateT {
            iter: 0usize,
            xnorm: 0f64,
            fnorm: 0f64,
            delta: 0f64,
            par: 0f64,
            r: ::MatrixF64::new(n, p).unwrap(),
            tau: ::VectorF64::new(if p < n {p} else {n}).unwrap(),
            diag: ::VectorF64::new(p).unwrap(),
            qtf: ::VectorF64::new(n).unwrap(),
            newton: ::VectorF64::new(p).unwrap(),
            gradient: ::VectorF64::new(p).unwrap(),
            x_trial: ::VectorF64::new(p).unwrap(),
            f_trial: ::VectorF64::new(n).unwrap(),
            df: ::VectorF64::new(n).unwrap(),
            sdiag: ::VectorF64::new(p).unwrap(),
            rptdx: ::VectorF64::new(n).unwrap(),
            w: ::VectorF64::new(n).unwrap(),
            work1: ::VectorF64::new(p).unwrap(),
            perm: ::Permutation::new(p).unwrap()
        }
    }
}

#[allow(unused_variables)]
// I'm not sure if I'll keep this function or not...
fn lmder_alloc(state: &mut LmderStateT, n: usize, p: usize) -> ::Value {
    /*state.r = match ::MatrixF64::new(n, p) {
        Some(m) => m,
        None => {
            rgsl_error!("failed to allocate space for r", ::Value::NoMem);
            ::MatrixF64::new(0, 0).unwrap() // to allow compilation
        }
    };

    state.tau = match ::VectorF64::new(if n < p {n} else {p}) {
        Some(t) => t,
        None => {
            rgsl_error!("failed to allocate space for tau", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.diag = match ::VectorF64::new(p) {
        Some(d) => d,
        None => {
            rgsl_error!("failed to allocate space for diag", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.qtf = match ::VectorF64::new(n) {
        Some(q) => q,
        None => {
            rgsl_error!("failed to allocate space for qtf", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.newton = match ::VectorF64::new(p) {
        Some(n) => n,
        None => {
            rgsl_error!("failed to allocate space for newton", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.gradient = match ::VectorF64::new(p) {
        Some(g) => g,
        None => {
            rgsl_error!("failed to allocate space for gradient", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.x_trial = match ::VectorF64::new(p) {
        Some(x) => x,
        None => {
            rgsl_error!("failed to allocate space for x_trial", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.f_trial = match ::VectorF64::new(n) {
        Some(f) => f,
        None => {
            rgsl_error!("failed to allocate space for f_trial", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.df = match ::VectorF64::new(n) {
        Some(d) => d,
        None => {
            rgsl_error!("failed to allocate space for df", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.sdiag = match ::VectorF64::new(p) {
        Some(s) => s,
        None => {
            rgsl_error!("failed to allocate space for sdiag", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.rptdx = match ::VectorF64::new(n) {
        Some(s) => s,
        None => {
            rgsl_error!("failed to allocate space for rptdx", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.w = match ::VectorF64::new(n) {
        Some(w) => w,
        None => {
            rgsl_error!("failed to allocate space for w", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.work1 = match ::VectorF64::new(p) {
        Some(w) => w,
        None => {
            rgsl_error!("failed to allocate space for work1", ::Value::NoMem);
            ::VectorF64::new(0).unwrap() // to allow compilation
        }
    };

    state.perm = match ::Permutation::new(p) {
        Some(p) => p,
        None => {
            rgsl_error!("failed to allocate space for perm", ::Value::NoMem);
            ::Permutation::new(0).unwrap() // to allow compilation
        }
    };*/

    ::Value::Success
}

#[allow(unused_variables)]
fn lmder_free(state: &mut LmderStateT) {
    /*::std::mem::drop(state.perm);
    ::std::mem::drop(state.work1);
    ::std::mem::drop(state.w);
    ::std::mem::drop(state.rptdx);
    ::std::mem::drop(state.sdiag);
    ::std::mem::drop(state.df);
    ::std::mem::drop(state.f_trial);
    ::std::mem::drop(state.x_trial);
    ::std::mem::drop(state.gradient);
    ::std::mem::drop(state.newton);
    ::std::mem::drop(state.qtf);
    ::std::mem::drop(state.diag);
    ::std::mem::drop(state.tau);
    ::std::mem::drop(state.r);*/
}

fn lmder_set<T>(vstate: &mut LmderStateT, fdf: &mut MultiFitFunctionFdf<T>, x: &mut ::VectorF64, f: &mut ::VectorF64, J: &mut ::MatrixF64,
    dx: &mut ::VectorF64) -> ::Value {
    set(vstate, fdf, x, f, J, dx, 0)
}

fn lmsder_set<T>(vstate: &mut LmderStateT, fdf: &mut MultiFitFunctionFdf<T>, x: &mut ::VectorF64, f: &mut ::VectorF64, J: &mut ::MatrixF64,
    dx: &mut ::VectorF64) -> ::Value {
    set(vstate, fdf, x, f, J, dx, 1)
}

fn lmder_iterate<T>(vstate: &mut LmderStateT, fdf: &mut MultiFitFunctionFdf<T>, x: &mut ::VectorF64, f: &mut ::VectorF64, J: &mut ::MatrixF64,
    dx: &mut ::VectorF64) -> ::Value {
    iterate(vstate, fdf, x, f, J, dx, 0)
}

#[allow(dead_code)]
fn lmsder_iterate<T>(vstate: &mut LmderStateT, fdf: &mut MultiFitFunctionFdf<T>, x: &mut ::VectorF64, f: &mut ::VectorF64, J: &mut ::MatrixF64,
    dx: &mut ::VectorF64) -> ::Value {
    iterate(vstate, fdf, x, f, J, dx, 1)
}

fn compute_diag(J: &::MatrixF64, diag: &mut ::VectorF64) {
    let n = J.size1();
    let p = J.size2();

    for j in 0..p {
        let mut sum = 0f64;

        for i in 0..n {
            let jij = J.get(i, j);

            sum += jij * jij;
        }
        if sum == 0f64 {
            sum = 0f64;
        }

        diag.set(j, sum.sqrt());
    }
}

fn update_diag(J: &::MatrixF64, diag: &mut ::VectorF64) {
    let n = diag.len();

    for j in 0..n {
        let mut sum = 0f64;

        for i in 0..n {
          let jij = J.get(i, j);
          
          sum += jij * jij;
        }
        if sum == 0f64 {
            sum = 1f64;
        }

        let cnorm = sum.sqrt();
        let diagj = diag.get(j);

        if cnorm > diagj {
            diag.set(j, cnorm);
        }
    }
}

fn scaled_enorm(d: &::VectorF64, f: &::VectorF64) -> f64 {
    let mut e2 = 0f64;
    let n = f.len();

    for i in 0..n {
        let fi = f.get(i);
        let di = d.get(i);
        let u = di * fi;

        e2 += u * u;
    }
    e2.sqrt()
}

fn compute_delta(diag: &mut ::VectorF64, x: &mut ::VectorF64) -> f64 {
    let Dx = scaled_enorm(diag, x);
    let factor = 100f64;  /* generally recommended value from MINPACK */

    if Dx > 0f64 {
        factor * Dx
    } else {
        factor
    }
}

fn set<T>(state: &mut LmderStateT, fdf: &mut MultiFitFunctionFdf<T>, x: &mut ::VectorF64, f: &mut ::VectorF64, j: &mut ::MatrixF64,
    dx: &mut ::VectorF64, scale: i32) -> ::Value {
    let mut signum = 0i32;

    /* Evaluate function at x */
    /* return immediately if evaluation raised error */
    {
        let status = match fdf.fdf {
            Some(func) => {
                func(x, fdf.params, f, j)
            }
            None => {
                /* finite difference approximation */
                gsl_multifit_fdfsolver_dif_fdf(x, fdf, f, j)
            }
        };

        if status != ::Value::Success {
            return status;
        }
    }

    state.par = 0f64;
    state.iter = 1;
    state.fnorm = enorm(f);

    dx.set_all(0f64);

    /* store column norms in diag */
    if scale != 0 {
        compute_diag(j, &mut state.diag);
    } else {
        state.diag.set_all(1f64);
    }

    /* set delta to 100 |D x| or to 100 if |D x| is zero */
    state.xnorm = scaled_enorm(&state.diag, x);
    state.delta = compute_delta(&mut state.diag, x);

    /* Factorize J into QR decomposition */
    state.r.copy_from(j);
    ::linear_algebra::QRPT_decomp(&state.r, &state.tau, &state.perm, &mut signum, &state.work1);

    state.rptdx.set_zero();
    state.w.set_zero();

    /* Zero the trial vector, as in the alloc function */

    state.f_trial.set_zero();

    /*#ifdef DEBUG
    printf("r = "); gsl_matrix_fprintf(stdout, r, "%g");
    printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d");
    printf("tau = "); gsl_vector_fprintf(stdout, tau, "%g");
    #endif*/

    ::Value::Success
}

fn enorm(f: &::VectorF64) -> f64 {
    ::blas::level1::dnrm2(f)
}

fn compute_gradient_direction(r: &::MatrixF64, p: &::Permutation, qtf: &::VectorF64, diag: &::VectorF64, g: &mut ::VectorF64) {
    let n = r.size2();

    for j in 0..n {
        let mut sum = 0f64;

        for i in 0..(j + 1) {
            sum += r.get(i, j) * qtf.get(i);
        }

        {
            let pj = p.get(j);
            let dpj = diag.get(pj);

            g.set(j, sum / dpj);
        }
    }
}

fn compute_trial_step(x: &mut ::VectorF64, dx: &mut ::VectorF64, x_trial: &mut ::VectorF64) {
    let n = x.len();

    for i in 0..n {
        let pi = dx.get(i);
        let xi = x.get(i);

        x_trial.set(i, xi + pi);
    }
}

fn compute_actual_reduction(fnorm: f64, fnorm1: f64) -> f64 {
    if 0.1f64 * fnorm1 < fnorm {
        let u = fnorm1 / fnorm;

        1f64 - u * u
    } else {
        -1f64
    }
}

fn compute_rptdx(r: &::MatrixF64, p: &::Permutation, dx: &::VectorF64, rptdx: &mut ::VectorF64) {
    let n = dx.len();

    for i in 0..n {
        let mut sum = 0f64;

        for j in i..n {
            let pj = p.get(j);

            sum += r.get(i, j) * dx.get(pj);
        }

        rptdx.set(i, sum);
    }
}

#[allow(unused_assignments)]
fn iterate<T>(state: &mut LmderStateT, fdf: &mut MultiFitFunctionFdf<T>, x: &mut ::VectorF64, f: &mut ::VectorF64, J: &mut ::MatrixF64,
    dx: &mut ::VectorF64, scale: i32) -> ::Value {
    let mut prered = 0f64;
    let mut actred = 0f64;
    let mut pnorm = 0f64;
    let mut fnorm1 = 0f64;
    let mut fnorm1p = 0f64;
    let mut gnorm = 0f64;
    let mut dirder = 0f64;

    let mut iter = 0i32;

    let p1 = 0.1f64;
    let p25 = 0.25f64;
    let p5 = 0.5f64;
    let p75 = 0.75f64;
    let p0001 = 0.0001f64;

    if state.fnorm == 0f64 {
        return ::Value::Success;
    }

    /* Compute qtf = Q^T f */

    state.qtf.copy_from(f);
    ::linear_algebra::QR_QTvec(&state.r, &state.tau, &state.qtf);

    /* Compute norm of scaled gradient */

    compute_gradient_direction(&state.r, &state.perm, &state.qtf, &state.diag, &mut state.gradient);

    { 
        let iamax = ::blas::level1::idamax(&state.gradient);

        gnorm = unsafe { (state.gradient.get(iamax as usize) / state.fnorm).abs() };
    }

    /* Determine the Levenberg-Marquardt parameter */

    loop {
        iter += 1;

        {
            let status = lmpar(&mut state.r, &state.perm, &state.qtf, &state.diag, state.delta, &mut (state.par), &mut state.newton,
                &mut state.gradient, &mut state.sdiag, dx, &mut state.w);

            if status != ::Value::Success {
                return status;
            }
        }

        /* Take a trial step */

        dx.scale(-1f64); /* reverse the step to go downhill */

        compute_trial_step(x, dx, &mut state.x_trial);

        pnorm = scaled_enorm(&state.diag, dx);

        if state.iter == 1 {
            if pnorm < state.delta {
        /*#ifdef DEBUG
              printf("set delta = pnorm = %g\n" , pnorm);
        #endif*/
                state.delta = pnorm;
            }
        }

        /* Evaluate function at x + p */
        /* return immediately if evaluation raised error */
        {
            let status = ((*fdf).f)(&state.x_trial, fdf.params, &mut state.f_trial); //GSL_MULTIFIT_FN_EVAL_F (fdf, x_trial, f_trial);
            
            if status != ::Value::Success {
                return status;
            }
        }

        fnorm1 = enorm(&state.f_trial);

        /* Compute the scaled actual reduction */

        actred = compute_actual_reduction(state.fnorm, fnorm1);

        /*#ifdef DEBUG
            printf("lmiterate: fnorm = %g fnorm1 = %g  actred = %g\n", state->fnorm, fnorm1, actred);
            printf("r = "); gsl_matrix_fprintf(stdout, r, "%g");
            printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d");
            printf("dx = "); gsl_vector_fprintf(stdout, dx, "%g");
        #endif*/

        /* Compute rptdx = R P^T dx, noting that |J dx| = |R P^T dx| */

        compute_rptdx(&state.r, &state.perm, dx, &mut state.rptdx);

        /*#ifdef DEBUG
        printf("rptdx = "); gsl_vector_fprintf(stdout, rptdx, "%g");
        #endif*/

        fnorm1p = enorm(&state.rptdx);

        /* Compute the scaled predicted reduction = |J dx|^2 + 2 par |D dx|^2 */

        { 
            let t1 = fnorm1p / state.fnorm;
            let t2 = (state.par.sqrt() * pnorm) / state.fnorm;

            prered = t1 * t1 + t2 * t2 / p5;
            dirder = -(t1 * t1 + t2 * t2);
        }

        /* compute the ratio of the actual to predicted reduction */

        let ratio = if prered > 0f64 {
            actred / prered
        } else {
            0f64
        };

        /*#ifdef DEBUG
        printf("lmiterate: prered = %g dirder = %g ratio = %g\n", prered, dirder,ratio);
        #endif*/

        /* update the step bound */
        if ratio > p25 {
    /*#ifdef DEBUG
          printf("ratio > p25\n");
    #endif*/
            if state.par == 0f64 || ratio >= p75 {
                state.delta = pnorm / p5;
                state.par *= p5;
    /*#ifdef DEBUG
              printf("updated step bounds: delta = %g, par = %g\n", state->delta, state->par);
    #endif*/
            }
        } else {
            let mut temp = if actred >= 0f64 {p5} else {p5 * dirder / (dirder + p5 * actred)};

    /*#ifdef DEBUG
          printf("ratio < p25\n");
    #endif*/

            if p1 * fnorm1 >= state.fnorm || temp < p1 {
                temp = p1;
            }

            state.delta = temp * state.delta.min(pnorm / p1);

            state.par /= temp;
    /*#ifdef DEBUG
          printf("updated step bounds: delta = %g, par = %g\n", state->delta, state->par);
    #endif*/
        }


        /* test for successful iteration, termination and stringent tolerances */

        if ratio >= p0001 {
            x.copy_from(&state.x_trial);
            f.copy_from(&state.f_trial);

            /* return immediately if evaluation raised error */
            {
                let status = match fdf.df {
                    Some(func) => {
                        func(&state.x_trial, fdf.params, J)
                    }
                    None => {
                        gsl_multifit_fdfsolver_dif_df(&mut state.x_trial, fdf, &mut state.f_trial, J)
                    }
                };

                if status != ::Value::Success {
                    return status;
                }
            }

            /* wa2_j  = diag_j * x_j */
            state.xnorm = scaled_enorm(&state.diag, x);
            state.fnorm = fnorm1;
            state.iter += 1;

            /* Rescale if necessary */
            if scale != 0 {
                update_diag(J, &mut state.diag);
            }

            {
                let mut signum = 0;

                state.r.copy_from(J);
                ::linear_algebra::QRPT_decomp(&state.r, &state.tau, &state.perm, &mut signum, &state.work1);
            }

            return ::Value::Success;
        } else if actred.abs() <= ::DBL_EPSILON  && prered <= ::DBL_EPSILON  && p5 * ratio <= 1f64 {
            return ::Value::TolF;
        } else if state.delta <= ::DBL_EPSILON * state.xnorm {
            return ::Value::TolX;
        } else if gnorm <= ::DBL_EPSILON {
            return ::Value::TolG;
        } else if iter >= 10 {
            /* stop inner loop if successful */
            break;
        }
    }

    return ::Value::NoProg;
}

fn gsl_multifit_test_delta(dx: &::VectorF64, x: &::VectorF64, epsabs: f64, epsrel: f64) -> ::Value {
    let mut ok = false;

    if epsrel < 0f64 {
        rgsl_error!("relative tolerance is negative", ::Value::BadTol);
        return ::Value::BadTol;
    }

    for i in 0..x.len() {
        let xi = x.get(i);
        let dxi = dx.get(i);
        let tolerance = epsabs + epsrel * xi.abs();

        if dxi.abs() < tolerance {
            ok = true;
        } else {
            ok = false;
            break;
        }
    }

    if ok {
        ::Value::Success
    } else {
        ::Value::Continue
    }
}

/*
gsl_multifit_fdfsolver_dif_fdf()
  Compute function values (analytic) and approximate Jacobian using finite
differences
Inputs: x      - parameter vector
        fdf    - fdf
        f      - (output) function values f_i(x)
        J      - (output) approximate Jacobian matrix
Return: success or error
*/

fn gsl_multifit_fdfsolver_dif_fdf<T>(x: &mut ::VectorF64, fdf: &mut MultiFitFunctionFdf<T>, f: &mut ::VectorF64,
    j: &mut ::MatrixF64) -> ::Value {
    let mut status = ((*fdf).f)(x, fdf.params, f); // GSL_MULTIFIT_FN_EVAL_F(fdf, x, f);
    if status != ::Value::Success {
        return status;
    }

    status = fdjac(x, fdf, f, j);
    if status != ::Value::Success {
        return status;
    }

    status
}

/*
fdjac()
  Compute approximate Jacobian using forward differences
Inputs: x   - parameter vector
        fdf - fdf struct
        f   - (input) vector of function values f_i(x)
        J   - (output) Jacobian matrix
Return: success or error
*/

fn fdjac<T>(x: &mut ::VectorF64, fdf: &mut MultiFitFunctionFdf<T>, f: &::VectorF64, jm: &mut ::MatrixF64) -> ::Value {
    let mut status = ::Value::Success;
    let epsfcn = 0f64;
    let eps = (epsfcn.max(::DBL_EPSILON)).sqrt();

    for j in 0..fdf.p {
        let xj = x.get(j);

        /* use column j of J as temporary storage for f(x + dx) */
        let (mut v, _) = jm.get_col(j).unwrap();

        let mut h = eps * xj.abs();
        if h == 0f64 {
            h = eps;
        }

        /* perturb x_j to compute forward difference */
        x.set(j, xj + h);

        status = ((*fdf).f)(x, fdf.params, &mut v); //GSL_MULTIFIT_FN_EVAL_F (fdf, x, &v.vector);
        if status != ::Value::Success {
            return status;
        }

        /* restore x_j */
        x.set(j, xj);

        h = 1f64 / h;
        for i in 0..fdf.n {
            let fnext = v.get(i);
            let fi = f.get(i);

            jm.set(i, j, (fnext - fi) * h);
        }
    }

    status
}

/*
gsl_multifit_fdfsolver_dif_df()
  Compute approximate Jacobian using finite differences
Inputs: x   - parameter vector
        fdf - fdf
        f   - (input) function values f_i(x)
        J   - (output) approximate Jacobian matrix
Return: success or error
*/

fn gsl_multifit_fdfsolver_dif_df<T>(x: &mut ::VectorF64, fdf: &mut MultiFitFunctionFdf<T>, f: &::VectorF64,
    J: &mut ::MatrixF64) -> ::Value {
    fdjac(x, fdf, f, J)
}

#[allow(unused_assignments)]
fn lmpar(r: &mut ::MatrixF64, perm: &::Permutation, qtf: &::VectorF64, diag: &::VectorF64, delta: f64, par_inout: &mut f64,
    newton: &mut ::VectorF64, gradient: &mut ::VectorF64, sdiag: &mut ::VectorF64, x: &mut ::VectorF64,
    w: &mut ::VectorF64) -> ::Value {
    let mut dxnorm = 0f64;
    let mut gnorm = 0f64;
    let mut fp = 0f64;
    let mut fp_old = 0f64;
    let mut par_lower = 0f64;
    let mut par_upper = 0f64;
    let mut par_c = 0f64;

    let mut par = *par_inout;
    let mut iter = 0usize;

    /*#ifdef DEBUG
    printf("ENTERING lmpar\n");
    #endif*/


    compute_newton_direction(r, perm, qtf, newton);

    /*#ifdef DEBUG
    printf ("newton = ");
    gsl_vector_fprintf (stdout, newton, "%g");
    printf ("\n");

    printf ("diag = ");
    gsl_vector_fprintf (stdout, diag, "%g");
    printf ("\n");
    #endif*/

    /* Evaluate the function at the origin and test for acceptance of
     the Gauss-Newton direction. */

    dxnorm = scaled_enorm(diag, newton);

    fp = dxnorm - delta;

    /*#ifdef DEBUG
    printf ("dxnorm = %g, delta = %g, fp = %g\n", dxnorm, delta, fp);
    #endif*/

    if fp <= 0.1 * delta {
        x.copy_from(newton);
        /*#ifdef DEBUG
          printf ("took newton (fp = %g, delta = %g)\n", fp, delta);
        #endif*/

        *par_inout = 0f64;

        return ::Value::Success;
    }

    /*#ifdef DEBUG
    printf ("r = ");
    gsl_matrix_fprintf (stdout, r, "%g");
    printf ("\n");

    printf ("newton = ");
    gsl_vector_fprintf (stdout, newton, "%g");
    printf ("\n");

    printf ("dxnorm = %g\n", dxnorm);
    #endif*/

    compute_newton_bound(r, newton, dxnorm, perm, diag, w);

    /*#ifdef DEBUG
    printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d");

    printf ("diag = ");
    gsl_vector_fprintf (stdout, diag, "%g");
    printf ("\n");

    printf ("w = ");
    gsl_vector_fprintf (stdout, w, "%g");
    printf ("\n");
    #endif*/


    {
        let wnorm = enorm(w);
        let phider = wnorm * wnorm;

        /* w == zero if r rank-deficient, 
           then set lower bound to zero form MINPACK, lmder.f 
           Hans E. Plesser 2002-02-25 (hans.plesser@itf.nlh.no) */
        par_lower = if wnorm > 0f64 {
            fp / (delta * phider)
        } else {
            0f64
        };
    }

    /*#ifdef DEBUG
    printf("par       = %g\n", par      );
    printf("par_lower = %g\n", par_lower);
    #endif*/

    compute_gradient_direction(r, perm, qtf, diag, gradient);

    gnorm = enorm(gradient);

    /*#ifdef DEBUG
    printf("gradient = "); gsl_vector_fprintf(stdout, gradient, "%g"); printf("\n");
    printf("gnorm = %g\n", gnorm);
    #endif*/

    par_upper =  gnorm / delta;

    if par_upper == 0f64 {
        par_upper = ::DBL_MIN / delta.min(0.1f64);
    }

    /*#ifdef DEBUG
    printf("par_upper = %g\n", par_upper);
    #endif*/

    if par > par_upper {
        /*#ifdef DEBUG
        printf("set par to par_upper\n");
        #endif*/

        par = par_upper;
    } else if par < par_lower {
        /*#ifdef DEBUG
        printf("set par to par_lower\n");
        #endif*/

        par = par_lower;
    }

    if par == 0f64 {
        par = gnorm / dxnorm;
        /*#ifdef DEBUG
        printf("set par to gnorm/dxnorm = %g\n", par);
        #endif*/
    }

    /* Beginning of iteration */
    loop {
        iter += 1;

        /*#ifdef DEBUG
        printf("lmpar iteration = %d\n", iter);
        #endif*/

        //#ifdef BRIANSFIX
        /* Seems like this is described in the paper but not in the MINPACK code */

        // I keep the BRIANSFIX for the moment
        if par < par_lower || par > par_upper {
            par = (par_lower * par_upper).sqrt().max(0.001f64 * par_upper);
        }
        //#endif

        /* Evaluate the function at the current value of par */

        if par == 0f64 {
            par = (0.001f64 * par_upper).max(::DBL_MIN);
            /*#ifdef DEBUG
              printf("par = 0, set par to  = %g\n", par);
            #endif*/
        }

        /* Compute the least squares solution of [ R P x - Q^T f, sqrt(par) D x]
         for A = Q R P^T */

        /*#ifdef DEBUG
        printf ("calling qrsolv with par = %g\n", par);
        #endif*/

        {
            let sqrt_par = par.sqrt();

            qrsolv(r, perm, sqrt_par, diag, qtf, x, sdiag, w);
        }

        dxnorm = scaled_enorm(diag, x);

        fp_old = fp;

        fp = dxnorm - delta;

        /*#ifdef DEBUG
        printf ("After qrsolv dxnorm = %g, delta = %g, fp = %g\n", dxnorm, delta, fp);
        printf ("sdiag = ") ; gsl_vector_fprintf(stdout, sdiag, "%g"); printf("\n");
        printf ("x = ") ; gsl_vector_fprintf(stdout, x, "%g"); printf("\n");
        printf ("r = ") ; gsl_matrix_fprintf(stdout, r, "%g"); printf("\nXXX\n");
        #endif*/

        /* If the function is small enough, accept the current value of par */

        if fp.abs() <= 0.1f64 * delta {
            break;
        }

        if par_lower == 0f64 && fp <= fp_old && fp_old < 0f64 {
            break;
        }

        /* Check for maximum number of iterations */

        if iter == 10 {
            break;
        }

        /* Compute the Newton correction */

        compute_newton_correction(r, sdiag, perm, x, dxnorm, diag, w);

        /*#ifdef DEBUG
        printf ("newton_correction = ");
        gsl_vector_fprintf(stdout, w, "%g"); printf("\n");
        #endif*/

        {
            let wnorm = enorm(w);

            par_c = fp / (delta * wnorm * wnorm);
        }

        /*#ifdef DEBUG
        printf("fp = %g\n", fp);
        printf("par_lower = %g\n", par_lower);
        printf("par_upper = %g\n", par_upper);
        printf("par_c = %g\n", par_c);
        #endif*/


        /* Depending on the sign of the function, update par_lower or par_upper */

        if fp > 0f64 {
            if par > par_lower {
                par_lower = par;
                /*#ifdef DEBUG
                  printf("fp > 0: set par_lower = par = %g\n", par);
                #endif*/
            }
        } else if fp < 0f64 {
            if par < par_upper {
                /*#ifdef DEBUG
                  printf("fp < 0: set par_upper = par = %g\n", par);
                #endif*/
                par_upper = par;
            }
        }

        /* Compute an improved estimate for par */

        /*#ifdef DEBUG
          printf("improved estimate par = MAX(%g, %g) \n", par_lower, par+par_c);
        #endif*/

        par = par_lower.max(par + par_c);

        /*#ifdef DEBUG
          printf("improved estimate par = %g \n", par);
        #endif*/

    }

    /*#ifdef DEBUG
    printf("LEAVING lmpar, par = %g\n", par);
    #endif*/

    *par_inout = par;

    ::Value::Success
}

fn compute_newton_direction(r: &::MatrixF64, perm: &::Permutation, qtf: &::VectorF64, x: &mut ::VectorF64) {
    /* Compute and store in x the Gauss-Newton direction. If the
     Jacobian is rank-deficient then obtain a least squares
     solution. */

    let n = r.size2();

    for i in 0..n {
        let qtfi = qtf.get(i);

        x.set(i, qtfi);
    }

    let nsing = count_nsing(r);

    /*#ifdef DEBUG
    printf("nsing = %d\n", nsing);
    printf("r = "); gsl_matrix_fprintf(stdout, r, "%g"); printf("\n");
    printf("qtf = "); gsl_vector_fprintf(stdout, x, "%g"); printf("\n");
    #endif*/

    if nsing < n {
        for i in nsing..n {
            x.set(i, 0f64);
        }
    }

    if nsing > 0usize {
        for j in nsing..0 {
            let rjj = r.get(j, j);
            let temp = x.get(j) / rjj;
          
            x.set(j, temp);
              
            for i in 0..j {
                let rij = r.get(i, j);
                let xi = x.get(i);
              
                x.set(i, xi - rij * temp);
            }
        }
    }

    perm.permute_vector_inverse(x);
}

fn compute_newton_bound(r: &::MatrixF64, x: &::VectorF64, dxnorm: f64, perm: &::Permutation, diag: &::VectorF64,
    w: &mut ::VectorF64) {
    /* If the jacobian is not rank-deficient then the Newton step
     provides a lower bound for the zero of the function. Otherwise
     set this bound to zero. */

    let n = r.size2();

    let nsing = count_nsing(r);

    if nsing < n {
        w.set_zero();
        return;
    }

    for i in 0..n {
        let pi = perm.get(i);

        let dpi = diag.get(pi);
        let xpi = x.get(pi);

        w.set(i, dpi * (dpi * xpi / dxnorm));
    }

    for j in 0..n {
        let mut sum = 0f64;

        for i in 0..j {
            sum += r.get(i, j) * w.get(i);
        }

        {
            let rjj = r.get(j, j);
            let wj = w.get(j);

            w.set(j, (wj - sum) / rjj);
        }
    }
}

/* This function computes the solution to the least squares system
   phi = [ A x =  b , lambda D x = 0 ]^2
    
   where A is an M by N matrix, D is an N by N diagonal matrix, lambda
   is a scalar parameter and b is a vector of length M.
   The function requires the factorization of A into A = Q R P^T,
   where Q is an orthogonal matrix, R is an upper triangular matrix
   with diagonal elements of non-increasing magnitude and P is a
   permuation matrix. The system above is then equivalent to
   [ R z = Q^T b, P^T (lambda D) P z = 0 ]
   where x = P z. If this system does not have full rank then a least
   squares solution is obtained.  On output the function also provides
   an upper triangular matrix S such that
   P^T (A^T A + lambda^2 D^T D) P = S^T S
   Parameters,
   
   r: On input, contains the full upper triangle of R. On output the
   strict lower triangle contains the transpose of the strict upper
   triangle of S, and the diagonal of S is stored in sdiag.  The full
   upper triangle of R is not modified.
   p: the encoded form of the permutation matrix P. column j of P is
   column p[j] of the identity matrix.
   lambda, diag: contains the scalar lambda and the diagonal elements
   of the matrix D
   qtb: contains the product Q^T b
   x: on output contains the least squares solution of the system
   wa: is a workspace of length N
   */
fn qrsolv(r: &mut ::MatrixF64, p: &::Permutation, lambda: f64, diag: &::VectorF64, qtb: &::VectorF64, 
    x: &mut ::VectorF64, sdiag: &mut ::VectorF64, wa: &mut ::VectorF64) -> ::Value {
    let n = r.size2();

    /* Copy r and qtb to preserve input and initialise s. In particular,
     save the diagonal elements of r in x */

    let mut j = 0;
    while j < n {
        let rjj = r.get(j, j);
        let qtbj = qtb.get(j);

        let mut i = j + 1;
        while i < n {
            let rji = r.get(j, i);

            r.set(i, j, rji);
            i += 1;
        }

        x.set(j, rjj);
        wa.set(j, qtbj);
        j += 1;
    }

    /* Eliminate the diagonal matrix d using a Givens rotation */
    j = 0;
    while j < n {
        let pj = p.get(j);

        let diagpj = lambda * diag.get(pj);

        if diagpj == 0f64 {
            continue;
        }

        sdiag.set(j, diagpj);

        let mut k = j + 1;
        while k < n {
            sdiag.set(k, 0f64);
            k += 1;
        }

        /* The transformations to eliminate the row of d modify only a
           single element of qtb beyond the first n, which is initially
           zero */

        let mut qtbpj = 0f64;
        k = j;
        while k < n {
            /* Determine a Givens rotation which eliminates the
               appropriate element in the current row of d */

            let wak = wa.get(k);
            let rkk = r.get(k, k);
            let sdiagk = sdiag.get(k);

            if sdiagk == 0f64 {
                continue;
            }

            let (sine, cosine) = if rkk.abs() < sdiagk.abs() {
                let cotangent = rkk / sdiagk;
                let t_sine = 0.5f64 / (0.25f64 + 0.25f64 * cotangent * cotangent).sqrt();

                (t_sine, t_sine * cotangent)
            } else {
                let tangent = sdiagk / rkk;
                let t_cos = 0.5f64 / (0.25f64 + 0.25f64 * tangent * tangent).sqrt();

                (t_cos * tangent, t_cos)
            };

            /* Compute the modified diagonal element of r and the
               modified element of [qtb,0] */

            {
                let new_rkk = cosine * rkk + sine * sdiagk;
                let new_wak = cosine * wak + sine * qtbpj;
                
                qtbpj = -sine * wak + cosine * qtbpj;

                r.set(k, k, new_rkk);
                wa.set(k, new_wak);
            }

            /* Accumulate the transformation in the row of s */
            let mut i = k + 1;
            while i < n {
                let rik = r.get(i, k);
                let sdiagi = sdiag.get(i);
              
                let new_rik = cosine * rik + sine * sdiagi;
                let new_sdiagi = -sine * rik + cosine * sdiagi;
              
                r.set(i, k, new_rik);
                sdiag.set(i, new_sdiagi);
                i += 1;
            }
            k += 1;
        }

        /* Store the corresponding diagonal element of s and restore the
           corresponding diagonal element of r */

        {
            let rjj = r.get(j, j);
            let xj = x.get(j);
            
            sdiag.set(j, rjj);
            r.set(j, j, xj);
        }
        j += 1;

    }

    /* Solve the triangular system for z. If the system is singular then
       obtain a least squares solution */

    let mut nsing = n;
    j = 0;
    while j < n {
        let sdiagj = sdiag.get(j);

        if sdiagj == 0f64 {
            nsing = j;
            break;
        }
        j += 1;
    }

    j = nsing;
    while j < n {
        wa.set(j, 0f64);
        j += 1;
    }

    let mut k = 0;
    while k < nsing {
        let mut sum = 0f64;

        j = (nsing - 1) - k;

        let mut i = j + 1;
        while i < nsing {
            sum += r.get(i, j) * wa.get(i);
            i += 1;
        }

        {
            let waj = wa.get(j);
            let sdiagj = sdiag.get(j);

            wa.set(j, (waj - sum) / sdiagj);
        }
        k += 1;
    }

    /* Permute the components of z back to the components of x */
    j = 0;
    while j < n {
        let pj = p.get(j);
        let waj = wa.get(j);

        x.set(pj, waj);
        j += 1;
    }

    ::Value::Success
}

fn compute_newton_correction(r: &::MatrixF64, sdiag: &::VectorF64, p: &::Permutation, x: &mut ::VectorF64, dxnorm: f64,
    diag: &::VectorF64, w: &mut ::VectorF64) {
    let n = r.size2();

    let mut i = 0;
    while i < n {
      let pi = p.get(i);

      let dpi = diag.get(pi);
      let xpi = x.get(pi);

      w.set(i, dpi * (dpi * xpi) / dxnorm);
      i += 1;
    }

    let mut j = 0;
    while j < n {
        let sj = sdiag.get(j);
        let wj = w.get(j);

        let tj = wj / sj;

        w.set(j, tj);

        let mut i = j + 1;
        while i < n {
            let rij = r.get (i, j);
            let wi = w.get (i);

            w.set (i, wi - rij * tj);
            i += 1;
        }
        j += 1;
    }
}

fn count_nsing(r: &::MatrixF64) -> usize {
    /* Count the number of nonsingular entries. Returns the index of the
       first entry which is singular. */

    let n = r.size2();
    let mut i = 0usize;

    while i < n {
        let rii = r.get(i, i);

        if rii == 0f64 {
            break;
        }
        i += 1;
    }

    i
}