DEWQ/bit_utils/
bitmap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/// A bitmap representation for storing and manipulating bit-level data
///
/// # Structure
///
/// The `BitMap` stores a 2D grid of bits as a vector of bytes, optimized for space efficiency
///
/// # Methods
///
/// Provides methods to:
/// - Create a new bitmap
/// - Set and get individual bits
/// - Invert bits
/// - Get bitmap size
/// - Save bitmap to a file
///
/// # Example
///
/// ```rust
/// let mut bitmap = BitMap::new(10);
/// bitmap.set(5, 7, 1);
/// assert_eq!(bitmap.get(5, 7), Bit::One);
/// ```


use super::bit::Bit;
use std::fmt::Display;
use std::fs::File;
use std::io::Write;

// Helper functions
fn get_byte_location(j: usize) -> (usize, usize) {
    (j / 8, j % 8)
}

// bitmaps can only be square in size
pub struct BitMap {
    /// Internal storage of bits using byte arrays
    map: Vec<Vec<u8>>,
    /// Size of the bitmap (width and height)
    size: usize,
}

impl BitMap {
    /// Creates a new bitmap with specified size
    ///
    /// # Arguments
    ///
    /// * `size` - The width and height of the bitmap (must be square)
    ///
    /// # Returns
    ///
    /// A new `BitMap` initialized with zeros
    pub fn new(size: usize) -> Self {
        Self {
            map: vec![vec![0u8; (size / 8) + 1]; size],
            size,
        }
    }

    /// Sets a specific bit in the bitmap
    ///
    /// # Arguments
    ///
    /// * `i` - Row index
    /// * `j` - Column index
    /// * `bit` - Bit value to set (can be `Bit::One` or `Bit::Zero`)
    pub fn set<B>(&mut self, i: usize, j: usize, bit: B)
    where
        B: Into<Bit>,
    {
        if i >= self.size || j >= self.size {
            return;
        }

        let row = &mut self.map[i];

        let (byte, byte_offset) = get_byte_location(j);

        match bit.into() {
            Bit::One => row[byte] |= 1 << byte_offset,
            Bit::Zero => row[byte] &= !(1 << byte_offset),
        }
    }

    /// Inverts the bit at the specified location
    ///
    /// # Arguments
    ///
    /// * `i` - Row index
    /// * `j` - Column index
    pub fn invert_bit(&mut self, i: usize, j: usize) {
        let row = &mut self.map[i];

        let (byte, byte_offset) = get_byte_location(j);

        row[byte] ^= 1 << byte_offset;
    }

    /// Retrieves the bit value at a specific location
    ///
    /// # Arguments
    ///
    /// * `i` - Row index
    /// * `j` - Column index
    ///
    /// # Returns
    ///
    /// The `Bit` value at the specified location
    pub fn get(&self, i: usize, j: usize) -> Bit {
        let row = &self.map[i];

        let (byte, byte_offset) = get_byte_location(j);

        (row[byte] & (1 << byte_offset)).into()
    }

    /// Returns the size of the bitmap
    ///
    /// # Returns
    ///
    /// The width/height of the bitmap
    pub fn size(&self) -> usize {
        self.size
    }

    /// Saves the bitmap to a file in BMP format
    ///
    /// # Arguments
    ///
    /// * `path` - File path to save the bitmap
    ///
    /// # Remarks
    ///
    /// Creates a 1bpp bitmap image with a black and white color palette
    pub fn save_to_file<P>(&self, path: P)
    where
        P: AsRef<std::path::Path>,
    {
        if let Ok(mut file) = File::create(path) {
            // Write the bmp header 14 bytes

            // header field
            _ = file.write(&[0x42, 0x4D]); // ASCII BM

            // Size of the bmp file in bytes
            let file_size = (62 + (self.size() * self.size())) as u32;
            // let file_size = (62 + 100) as u32;
            _ = file.write(&[
                file_size as u8,
                (file_size >> 8) as u8,
                (file_size >> 16) as u8,
                (file_size >> 24) as u8,
            ]);

            // reserved bytes
            _ = file.write(&[0, 0, 0, 0]);

            // Offset of the pixel array
            _ = file.write(&[62, 0, 0, 0]);

            // BITMAPINFOHEADER --------
            // Size of this header (40 bytes)
            _ = file.write(&[40, 0, 0, 0]);

            // Bitmap width in pixels
            // _ = file.write(&[10, 0, 0, 0]);
            // _ = file.write(&[10, 0, 0, 0]);
            _ = file.write(&[
                self.size() as u8,
                (self.size() >> 8) as u8,
                (self.size() >> 16) as u8,
                (self.size() >> 24) as u8,
            ]);

            // Bitmap height in pixels
            _ = file.write(&[
                self.size() as u8,
                (self.size() >> 8) as u8,
                (self.size() >> 16) as u8,
                (self.size() >> 24) as u8,
            ]);

            // Number of color planes (must be 1)
            _ = file.write(&[1, 0]);

            // Number of bits per pixel (1 in our case)
            _ = file.write(&[1, 0]);

            // Compression method being used (no compression)
            _ = file.write(&[0, 0, 0, 0]);

            // Image size (can be ignored)
            _ = file.write(&[0, 0, 0, 0]);

            // Horizontal resolution of the bitmap
            _ = file.write(&[255, 255, 255, 255]);

            // Vertical resolution of the bitmap
            _ = file.write(&[255, 255, 255, 255]);

            // Number of colors in the palette
            _ = file.write(&[2, 0, 0, 0]);

            // Number of important colors in the palette
            _ = file.write(&[0, 0, 0, 0]);

            // Color Palette
            // White
            _ = file.write(&[255, 255, 255, 0]);
            // Black
            _ = file.write(&[0, 0, 0, 0]);

            // Write the bits to the bitmap
            let mut bit_index = 0;
            let mut current_byte = 0;
            for i in (0..self.size()).rev() {
                for j in 0..self.size() {
                    match self.get(i, j) {
                        Bit::Zero => {}
                        Bit::One => {
                            current_byte |= 1 << (31 - bit_index);
                        }
                    }

                    bit_index += 1;

                    if bit_index == 32 {
                        _ = file.write(&[
                            (current_byte >> 24) as u8,
                            (current_byte >> 16) as u8,
                            (current_byte >> 8) as u8,
                            current_byte as u8,
                        ]);
                        current_byte = 0;
                        bit_index = 0;
                    }
                }

                if bit_index != 0 {
                    _ = file.write(&[
                        (current_byte >> 24) as u8,
                        (current_byte >> 16) as u8,
                        (current_byte >> 8) as u8,
                        current_byte as u8,
                    ]);
                }
                current_byte = 0;
                bit_index = 0;
            }
        }
    }
}

/// Implements a text-based display of the bitmap
///
/// Renders the bitmap using block characters, where:
/// - `██` represents a black/set bit
/// - `  ` represents a white/unset bit
impl Display for BitMap {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        for _ in 0..=self.size + 2 {
            write!(f, "██")?;
        }
        writeln!(f, "██")?;
        for _ in 0..=self.size + 2 {
            write!(f, "██")?;
        }
        writeln!(f, "██")?;

        for i in 0..self.size {
            write!(f, "██")?;
            write!(f, "██")?;
            for j in 0..self.size {
                match self.get(i, j) {
                    Bit::Zero => {
                        write!(f, "██")?;
                    }
                    Bit::One => {
                        write!(f, "  ")?;
                    }
                }
            }
            write!(f, "██")?;
            writeln!(f, "██")?;
        }

        for _ in 0..=self.size + 2 {
            write!(f, "██")?;
        }
        writeln!(f, "██")?;
        for _ in 0..=self.size + 2 {
            write!(f, "██")?;
        }
        writeln!(f, "██")?;

        Ok(())
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_bitmap_basics() {
        let mut bit_map = BitMap::new(10);

        bit_map.set(5, 7, 1);

        assert_eq!(bit_map.get(5, 7), Bit::One);
    }

    #[test]
    fn test_bitmap_sizing() {
        let bit_map = BitMap::new(10);

        assert_eq!(bit_map.map.len(), 10);
        assert_eq!(bit_map.map[0].len(), 2);
    }
}