1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
//! Embedding matrix representations.

use std::fs::File;
use std::io::{BufReader, Read, Seek, SeekFrom, Write};
use std::mem::size_of;

use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use failure::{ensure, format_err, Error};
use memmap::{Mmap, MmapOptions};
use ndarray::{Array, Array1, Array2, ArrayView, ArrayView2, Dimension, Ix1, Ix2};
use rand::{FromEntropy, Rng};
use rand_xorshift::XorShiftRng;
use reductive::pq::{QuantizeVector, ReconstructVector, TrainPQ, PQ};

use crate::io::private::{ChunkIdentifier, MmapChunk, ReadChunk, TypeId, WriteChunk};

/// Copy-on-write wrapper for `Array`/`ArrayView`.
///
/// The `CowArray` type stores an owned array or an array view. In
/// both cases a view (`as_view`) or an owned array (`into_owned`) can
/// be obtained. If the wrapped array is a view, retrieving an owned
/// array will copy the underlying data.
pub enum CowArray<'a, A, D> {
    Borrowed(ArrayView<'a, A, D>),
    Owned(Array<A, D>),
}

impl<'a, A, D> CowArray<'a, A, D>
where
    D: Dimension,
{
    pub fn as_view(&self) -> ArrayView<A, D> {
        match self {
            CowArray::Borrowed(borrow) => borrow.view(),
            CowArray::Owned(owned) => owned.view(),
        }
    }
}

impl<'a, A, D> CowArray<'a, A, D>
where
    A: Clone,
    D: Dimension,
{
    pub fn into_owned(self) -> Array<A, D> {
        match self {
            CowArray::Borrowed(borrow) => borrow.to_owned(),
            CowArray::Owned(owned) => owned,
        }
    }
}

/// 1D copy-on-write array.
pub type CowArray1<'a, A> = CowArray<'a, A, Ix1>;

/// Memory-mapped matrix.
pub struct MmapArray {
    map: Mmap,
    shape: Ix2,
}

impl MmapChunk for MmapArray {
    fn mmap_chunk(read: &mut BufReader<File>) -> Result<Self, Error> {
        ensure!(
            read.read_u32::<LittleEndian>()? == ChunkIdentifier::NdArray as u32,
            "invalid chunk identifier for NdArray"
        );

        // Read and discard chunk length.
        read.read_u64::<LittleEndian>()?;

        let rows = read.read_u64::<LittleEndian>()? as usize;
        let cols = read.read_u32::<LittleEndian>()? as usize;
        let shape = Ix2(rows, cols);

        ensure!(
            read.read_u32::<LittleEndian>()? == f32::type_id(),
            "Expected single precision floating point matrix for NdArray."
        );

        let n_padding = padding::<f32>(read.seek(SeekFrom::Current(0))?);
        read.seek(SeekFrom::Current(n_padding as i64))?;

        // Set up memory mapping.
        let matrix_len = shape.size() * size_of::<f32>();
        let offset = read.seek(SeekFrom::Current(0))?;
        let mut mmap_opts = MmapOptions::new();
        let map = unsafe {
            mmap_opts
                .offset(offset)
                .len(matrix_len)
                .map(&read.get_ref())?
        };

        // Position the reader after the matrix.
        read.seek(SeekFrom::Current(matrix_len as i64))?;

        Ok(MmapArray { map, shape })
    }
}

impl WriteChunk for MmapArray {
    fn chunk_identifier(&self) -> ChunkIdentifier {
        ChunkIdentifier::NdArray
    }

    fn write_chunk<W>(&self, write: &mut W) -> Result<(), Error>
    where
        W: Write + Seek,
    {
        NdArray::write_ndarray_chunk(self.view(), write)
    }
}

/// In-memory `ndarray` matrix.
#[derive(Debug)]
pub struct NdArray(pub Array2<f32>);

impl NdArray {
    fn write_ndarray_chunk<W>(data: ArrayView2<f32>, write: &mut W) -> Result<(), Error>
    where
        W: Write + Seek,
    {
        write.write_u32::<LittleEndian>(ChunkIdentifier::NdArray as u32)?;
        let n_padding = padding::<f32>(write.seek(SeekFrom::Current(0))?);
        // Chunk size: rows (u64), columns (u32), type id (u32),
        //             padding ([0,4) bytes), matrix.
        let chunk_len = size_of::<u64>()
            + size_of::<u32>()
            + size_of::<u32>()
            + n_padding as usize
            + (data.rows() * data.cols() * size_of::<f32>());
        write.write_u64::<LittleEndian>(chunk_len as u64)?;
        write.write_u64::<LittleEndian>(data.rows() as u64)?;
        write.write_u32::<LittleEndian>(data.cols() as u32)?;
        write.write_u32::<LittleEndian>(f32::type_id())?;

        // Write padding, such that the embedding matrix starts on at
        // a multiple of the size of f32 (4 bytes). This is necessary
        // for memory mapping a matrix. Interpreting the raw u8 data
        // as a proper f32 array requires that the data is aligned in
        // memory. However, we cannot always memory map the starting
        // offset of the matrix directly, since mmap(2) requires a
        // file offset that is page-aligned. Since the page size is
        // always a larger power of 2 (e.g. 2^12), which is divisible
        // by 4, the offset of the matrix with regards to the page
        // boundary is also a multiple of 4.

        let padding = vec![0; n_padding as usize];
        write.write_all(&padding)?;

        for row in data.outer_iter() {
            for col in row.iter() {
                write.write_f32::<LittleEndian>(*col)?;
            }
        }

        Ok(())
    }
}

impl ReadChunk for NdArray {
    fn read_chunk<R>(read: &mut R) -> Result<Self, Error>
    where
        R: Read + Seek,
    {
        let chunk_id = read.read_u32::<LittleEndian>()?;
        let chunk_id = ChunkIdentifier::try_from(chunk_id)
            .ok_or_else(|| format_err!("Unknown chunk identifier: {}", chunk_id))?;
        ensure!(
            chunk_id == ChunkIdentifier::NdArray,
            "Cannot read chunk {:?} as NdArray",
            chunk_id
        );

        // Read and discard chunk length.
        read.read_u64::<LittleEndian>()?;

        let rows = read.read_u64::<LittleEndian>()? as usize;
        let cols = read.read_u32::<LittleEndian>()? as usize;

        ensure!(
            read.read_u32::<LittleEndian>()? == f32::type_id(),
            "Expected single precision floating point matrix for NdArray."
        );

        let n_padding = padding::<f32>(read.seek(SeekFrom::Current(0))?);
        read.seek(SeekFrom::Current(n_padding as i64))?;

        let mut data = vec![0f32; rows * cols];
        read.read_f32_into::<LittleEndian>(&mut data)?;

        Ok(NdArray(Array2::from_shape_vec((rows, cols), data)?))
    }
}

impl WriteChunk for NdArray {
    fn chunk_identifier(&self) -> ChunkIdentifier {
        ChunkIdentifier::NdArray
    }

    fn write_chunk<W>(&self, write: &mut W) -> Result<(), Error>
    where
        W: Write + Seek,
    {
        Self::write_ndarray_chunk(self.0.view(), write)
    }
}

/// Quantized embedding matrix.
pub struct QuantizedArray {
    quantizer: PQ<f32>,
    quantized: Array2<u8>,
    norms: Option<Array1<f32>>,
}

impl ReadChunk for QuantizedArray {
    fn read_chunk<R>(read: &mut R) -> Result<Self, Error>
    where
        R: Read + Seek,
    {
        let chunk_id = read.read_u32::<LittleEndian>()?;
        let chunk_id = ChunkIdentifier::try_from(chunk_id)
            .ok_or_else(|| format_err!("Unknown chunk identifier: {}", chunk_id))?;
        ensure!(
            chunk_id == ChunkIdentifier::QuantizedArray,
            "Cannot read chunk {:?} as QuantizedArray",
            chunk_id
        );

        // Read and discard chunk length.
        read.read_u64::<LittleEndian>()?;

        let projection = read.read_u32::<LittleEndian>()? != 0;
        let read_norms = read.read_u32::<LittleEndian>()? != 0;
        let quantized_len = read.read_u32::<LittleEndian>()? as usize;
        let reconstructed_len = read.read_u32::<LittleEndian>()? as usize;
        let n_centroids = read.read_u32::<LittleEndian>()? as usize;
        let n_embeddings = read.read_u64::<LittleEndian>()? as usize;

        ensure!(
            read.read_u32::<LittleEndian>()? == u8::type_id(),
            "Expected unsigned byte quantized embedding matrices."
        );

        ensure!(
            read.read_u32::<LittleEndian>()? == f32::type_id(),
            "Expected single precision floating point matrix quantizer matrices."
        );

        let n_padding = padding::<f32>(read.seek(SeekFrom::Current(0))?);
        read.seek(SeekFrom::Current(n_padding as i64))?;

        let projection = if projection {
            let mut projection_vec = vec![0f32; reconstructed_len * reconstructed_len];
            read.read_f32_into::<LittleEndian>(&mut projection_vec)?;
            Some(Array2::from_shape_vec(
                (reconstructed_len, reconstructed_len),
                projection_vec,
            )?)
        } else {
            None
        };

        let mut quantizers = Vec::with_capacity(quantized_len);
        for _ in 0..quantized_len {
            let mut subquantizer_vec =
                vec![0f32; n_centroids * (reconstructed_len / quantized_len)];
            read.read_f32_into::<LittleEndian>(&mut subquantizer_vec)?;
            let subquantizer = Array2::from_shape_vec(
                (n_centroids, reconstructed_len / quantized_len),
                subquantizer_vec,
            )?;
            quantizers.push(subquantizer);
        }

        let norms = if read_norms {
            let mut norms_vec = vec![0f32; n_embeddings];
            read.read_f32_into::<LittleEndian>(&mut norms_vec)?;
            Some(Array1::from_vec(norms_vec))
        } else {
            None
        };

        let mut quantized_embeddings_vec = vec![0u8; n_embeddings * quantized_len];
        read.read_exact(&mut quantized_embeddings_vec)?;
        let quantized =
            Array2::from_shape_vec((n_embeddings, quantized_len), quantized_embeddings_vec)?;

        Ok(QuantizedArray {
            quantizer: PQ::new(projection, quantizers),
            quantized,
            norms,
        })
    }
}

impl WriteChunk for QuantizedArray {
    fn chunk_identifier(&self) -> ChunkIdentifier {
        ChunkIdentifier::QuantizedArray
    }

    fn write_chunk<W>(&self, write: &mut W) -> Result<(), Error>
    where
        W: Write + Seek,
    {
        write.write_u32::<LittleEndian>(ChunkIdentifier::QuantizedArray as u32)?;

        // projection (u32), use_norms (u32), quantized_len (u32),
        // reconstructed_len (u32), n_centroids (u32), rows (u64),
        // types (2 x u32 bytes), padding, projection matrix,
        // centroids, norms, quantized data.
        let n_padding = padding::<f32>(write.seek(SeekFrom::Current(0))?);
        let chunk_size = size_of::<u32>()
            + size_of::<u32>()
            + size_of::<u32>()
            + size_of::<u32>()
            + size_of::<u32>()
            + size_of::<u64>()
            + 2 * size_of::<u32>()
            + n_padding as usize
            + self.quantizer.projection().is_some() as usize
                * self.quantizer.reconstructed_len()
                * self.quantizer.reconstructed_len()
                * size_of::<f32>()
            + self.quantizer.quantized_len()
                * self.quantizer.n_quantizer_centroids()
                * (self.quantizer.reconstructed_len() / self.quantizer.quantized_len())
                * size_of::<f32>()
            + self.norms.is_some() as usize * self.quantized.rows() * size_of::<f32>()
            + self.quantized.rows() * self.quantizer.quantized_len();

        write.write_u64::<LittleEndian>(chunk_size as u64)?;

        write.write_u32::<LittleEndian>(self.quantizer.projection().is_some() as u32)?;
        write.write_u32::<LittleEndian>(self.norms.is_some() as u32)?;
        write.write_u32::<LittleEndian>(self.quantizer.quantized_len() as u32)?;
        write.write_u32::<LittleEndian>(self.quantizer.reconstructed_len() as u32)?;
        write.write_u32::<LittleEndian>(self.quantizer.n_quantizer_centroids() as u32)?;
        write.write_u64::<LittleEndian>(self.quantized.rows() as u64)?;

        // Quantized and reconstruction types.
        write.write_u32::<LittleEndian>(u8::type_id())?;
        write.write_u32::<LittleEndian>(f32::type_id())?;

        let padding = vec![0u8; n_padding as usize];
        write.write_all(&padding)?;

        // Write projection matrix.
        if let Some(projection) = self.quantizer.projection() {
            for row in projection.outer_iter() {
                for &col in row {
                    write.write_f32::<LittleEndian>(col)?;
                }
            }
        }

        // Write subquantizers.
        for subquantizer in self.quantizer.subquantizers() {
            for row in subquantizer.outer_iter() {
                for &col in row {
                    write.write_f32::<LittleEndian>(col)?;
                }
            }
        }

        // Write norms.
        if let Some(ref norms) = self.norms {
            for row in norms.outer_iter() {
                for &col in row {
                    write.write_f32::<LittleEndian>(col)?;
                }
            }
        }

        // Write quantized embedding matrix.
        for row in self.quantized.outer_iter() {
            for &col in row {
                write.write_u8(col)?;
            }
        }

        Ok(())
    }
}

/// Storage types wrapper.
///
/// This crate makes it possible to create fine-grained embedding
/// types, such as `Embeddings<SimpleVocab, NdArray>` or
/// `Embeddings<SubwordVocab, QuantizedArray>`. However, in some cases
/// it is more pleasant to have a single type that covers all
/// vocabulary and storage types. `VocabWrap` and `StorageWrap` wrap
/// all the vocabularies and storage types known to this crate such
/// that the type `Embeddings<VocabWrap, StorageWrap>` covers all
/// variations.
pub enum StorageWrap {
    NdArray(NdArray),
    QuantizedArray(QuantizedArray),
    MmapArray(MmapArray),
}

impl From<MmapArray> for StorageWrap {
    fn from(s: MmapArray) -> Self {
        StorageWrap::MmapArray(s)
    }
}

impl From<NdArray> for StorageWrap {
    fn from(s: NdArray) -> Self {
        StorageWrap::NdArray(s)
    }
}

impl From<QuantizedArray> for StorageWrap {
    fn from(s: QuantizedArray) -> Self {
        StorageWrap::QuantizedArray(s)
    }
}

impl ReadChunk for StorageWrap {
    fn read_chunk<R>(read: &mut R) -> Result<Self, Error>
    where
        R: Read + Seek,
    {
        let chunk_start_pos = read.seek(SeekFrom::Current(0))?;

        let chunk_id = read.read_u32::<LittleEndian>()?;
        let chunk_id = ChunkIdentifier::try_from(chunk_id)
            .ok_or_else(|| format_err!("Unknown chunk identifier: {}", chunk_id))?;

        read.seek(SeekFrom::Start(chunk_start_pos))?;

        match chunk_id {
            ChunkIdentifier::NdArray => NdArray::read_chunk(read).map(StorageWrap::NdArray),
            ChunkIdentifier::QuantizedArray => {
                QuantizedArray::read_chunk(read).map(StorageWrap::QuantizedArray)
            }
            _ => Err(format_err!(
                "Chunk type {:?} cannot be read as storage",
                chunk_id
            )),
        }
    }
}

impl MmapChunk for StorageWrap {
    fn mmap_chunk(read: &mut BufReader<File>) -> Result<Self, Error> {
        let chunk_start_pos = read.seek(SeekFrom::Current(0))?;

        let chunk_id = read.read_u32::<LittleEndian>()?;
        let chunk_id = ChunkIdentifier::try_from(chunk_id)
            .ok_or_else(|| format_err!("Unknown chunk identifier: {}", chunk_id))?;

        read.seek(SeekFrom::Start(chunk_start_pos))?;

        match chunk_id {
            ChunkIdentifier::NdArray => MmapArray::mmap_chunk(read).map(StorageWrap::MmapArray),
            _ => Err(format_err!(
                "Chunk type {:?} cannot be memory mapped as viewable storage",
                chunk_id
            )),
        }
    }
}

impl WriteChunk for StorageWrap {
    fn chunk_identifier(&self) -> ChunkIdentifier {
        match self {
            StorageWrap::MmapArray(inner) => inner.chunk_identifier(),
            StorageWrap::NdArray(inner) => inner.chunk_identifier(),
            StorageWrap::QuantizedArray(inner) => inner.chunk_identifier(),
        }
    }

    fn write_chunk<W>(&self, write: &mut W) -> Result<(), Error>
    where
        W: Write + Seek,
    {
        match self {
            StorageWrap::MmapArray(inner) => inner.write_chunk(write),
            StorageWrap::NdArray(inner) => inner.write_chunk(write),
            StorageWrap::QuantizedArray(inner) => inner.write_chunk(write),
        }
    }
}

/// Wrapper for storage types that implement views.
///
/// This type covers the subset of storage types that implement
/// `StorageView`. See the `StorageWrap` type for more information.
pub enum StorageViewWrap {
    MmapArray(MmapArray),
    NdArray(NdArray),
}

impl From<MmapArray> for StorageViewWrap {
    fn from(s: MmapArray) -> Self {
        StorageViewWrap::MmapArray(s)
    }
}

impl From<NdArray> for StorageViewWrap {
    fn from(s: NdArray) -> Self {
        StorageViewWrap::NdArray(s)
    }
}

impl ReadChunk for StorageViewWrap {
    fn read_chunk<R>(read: &mut R) -> Result<Self, Error>
    where
        R: Read + Seek,
    {
        let chunk_start_pos = read.seek(SeekFrom::Current(0))?;

        let chunk_id = read.read_u32::<LittleEndian>()?;
        let chunk_id = ChunkIdentifier::try_from(chunk_id)
            .ok_or_else(|| format_err!("Unknown chunk identifier: {}", chunk_id))?;

        read.seek(SeekFrom::Start(chunk_start_pos))?;

        match chunk_id {
            ChunkIdentifier::NdArray => NdArray::read_chunk(read).map(StorageViewWrap::NdArray),
            _ => Err(format_err!(
                "Chunk type {:?} cannot be read as viewable storage",
                chunk_id
            )),
        }
    }
}

impl WriteChunk for StorageViewWrap {
    fn chunk_identifier(&self) -> ChunkIdentifier {
        match self {
            StorageViewWrap::MmapArray(inner) => inner.chunk_identifier(),
            StorageViewWrap::NdArray(inner) => inner.chunk_identifier(),
        }
    }

    fn write_chunk<W>(&self, write: &mut W) -> Result<(), Error>
    where
        W: Write + Seek,
    {
        match self {
            StorageViewWrap::MmapArray(inner) => inner.write_chunk(write),
            StorageViewWrap::NdArray(inner) => inner.write_chunk(write),
        }
    }
}

impl MmapChunk for StorageViewWrap {
    fn mmap_chunk(read: &mut BufReader<File>) -> Result<Self, Error> {
        let chunk_start_pos = read.seek(SeekFrom::Current(0))?;

        let chunk_id = read.read_u32::<LittleEndian>()?;
        let chunk_id = ChunkIdentifier::try_from(chunk_id)
            .ok_or_else(|| format_err!("Unknown chunk identifier: {}", chunk_id))?;

        read.seek(SeekFrom::Start(chunk_start_pos))?;

        match chunk_id {
            ChunkIdentifier::NdArray => MmapArray::mmap_chunk(read).map(StorageViewWrap::MmapArray),
            _ => Err(format_err!(
                "Chunk type {:?} cannot be memory mapped as viewable storage",
                chunk_id
            )),
        }
    }
}

/// Embedding matrix storage.
///
/// To allow for embeddings to be stored in different manners (e.g.
/// regular *n x d* matrix or as quantized vectors), this trait
/// abstracts over concrete storage types.
pub trait Storage {
    fn embedding(&self, idx: usize) -> CowArray1<f32>;

    fn shape(&self) -> (usize, usize);
}

impl Storage for MmapArray {
    fn embedding(&self, idx: usize) -> CowArray1<f32> {
        CowArray::Owned(
            // Alignment is ok, padding guarantees that the pointer is at
            // a multiple of 4.
            #[allow(clippy::cast_ptr_alignment)]
            unsafe { ArrayView2::from_shape_ptr(self.shape, self.map.as_ptr() as *const f32) }
                .row(idx)
                .to_owned(),
        )
    }

    fn shape(&self) -> (usize, usize) {
        self.shape.into_pattern()
    }
}

impl Storage for NdArray {
    fn embedding(&self, idx: usize) -> CowArray1<f32> {
        CowArray::Borrowed(self.0.row(idx))
    }

    fn shape(&self) -> (usize, usize) {
        self.0.dim()
    }
}

impl Storage for QuantizedArray {
    fn embedding(&self, idx: usize) -> CowArray1<f32> {
        let mut reconstructed = self.quantizer.reconstruct_vector(self.quantized.row(idx));
        if let Some(ref norms) = self.norms {
            reconstructed *= norms[idx];
        }

        CowArray::Owned(reconstructed)
    }

    fn shape(&self) -> (usize, usize) {
        (self.quantized.rows(), self.quantizer.reconstructed_len())
    }
}

impl Storage for StorageWrap {
    fn embedding(&self, idx: usize) -> CowArray1<f32> {
        match self {
            StorageWrap::MmapArray(inner) => inner.embedding(idx),
            StorageWrap::NdArray(inner) => inner.embedding(idx),
            StorageWrap::QuantizedArray(inner) => inner.embedding(idx),
        }
    }

    fn shape(&self) -> (usize, usize) {
        match self {
            StorageWrap::MmapArray(inner) => inner.shape(),
            StorageWrap::NdArray(inner) => inner.shape(),
            StorageWrap::QuantizedArray(inner) => inner.shape(),
        }
    }
}

impl Storage for StorageViewWrap {
    fn embedding(&self, idx: usize) -> CowArray1<f32> {
        match self {
            StorageViewWrap::MmapArray(inner) => inner.embedding(idx),
            StorageViewWrap::NdArray(inner) => inner.embedding(idx),
        }
    }

    fn shape(&self) -> (usize, usize) {
        match self {
            StorageViewWrap::MmapArray(inner) => inner.shape(),
            StorageViewWrap::NdArray(inner) => inner.shape(),
        }
    }
}

/// Storage that provide a view of the embedding matrix.
pub trait StorageView: Storage {
    /// Get a view of the embedding matrix.
    fn view(&self) -> ArrayView2<f32>;
}

impl StorageView for NdArray {
    fn view(&self) -> ArrayView2<f32> {
        self.0.view()
    }
}

impl StorageView for MmapArray {
    fn view(&self) -> ArrayView2<f32> {
        // Alignment is ok, padding guarantees that the pointer is at
        // a multiple of 4.
        #[allow(clippy::cast_ptr_alignment)]
        unsafe {
            ArrayView2::from_shape_ptr(self.shape, self.map.as_ptr() as *const f32)
        }
    }
}

impl StorageView for StorageViewWrap {
    fn view(&self) -> ArrayView2<f32> {
        match self {
            StorageViewWrap::MmapArray(inner) => inner.view(),
            StorageViewWrap::NdArray(inner) => inner.view(),
        }
    }
}

/// Quantizable embedding matrix.
pub trait Quantize {
    /// Quantize the embedding matrix.
    ///
    /// This method trains a quantizer for the embedding matrix and
    /// then quantizes the matrix using this quantizer.
    ///
    /// The xorshift PRNG is used for picking the initial quantizer
    /// centroids.
    fn quantize<T>(
        &self,
        n_subquantizers: usize,
        n_subquantizer_bits: u32,
        n_iterations: usize,
        n_attempts: usize,
        normalize: bool,
    ) -> QuantizedArray
    where
        T: TrainPQ<f32>,
    {
        self.quantize_using::<T, _>(
            n_subquantizers,
            n_subquantizer_bits,
            n_iterations,
            n_attempts,
            normalize,
            &mut XorShiftRng::from_entropy(),
        )
    }

    /// Quantize the embedding matrix using the provided RNG.
    ///
    /// This method trains a quantizer for the embedding matrix and
    /// then quantizes the matrix using this quantizer.
    fn quantize_using<T, R>(
        &self,
        n_subquantizers: usize,
        n_subquantizer_bits: u32,
        n_iterations: usize,
        n_attempts: usize,
        normalize: bool,
        rng: &mut R,
    ) -> QuantizedArray
    where
        T: TrainPQ<f32>,
        R: Rng;
}

impl<S> Quantize for S
where
    S: StorageView,
{
    /// Quantize the embedding matrix.
    ///
    /// This method trains a quantizer for the embedding matrix and
    /// then quantizes the matrix using this quantizer.
    fn quantize_using<T, R>(
        &self,
        n_subquantizers: usize,
        n_subquantizer_bits: u32,
        n_iterations: usize,
        n_attempts: usize,
        normalize: bool,
        rng: &mut R,
    ) -> QuantizedArray
    where
        T: TrainPQ<f32>,
        R: Rng,
    {
        let (embeds, norms) = if normalize {
            let norms = self.view().outer_iter().map(|e| e.dot(&e).sqrt()).collect();
            let mut normalized = self.view().to_owned();
            for (mut embedding, &norm) in normalized.outer_iter_mut().zip(&norms) {
                embedding /= norm;
            }
            (CowArray::Owned(normalized), Some(norms))
        } else {
            (CowArray::Borrowed(self.view()), None)
        };

        let quantizer = T::train_pq_using(
            n_subquantizers,
            n_subquantizer_bits,
            n_iterations,
            n_attempts,
            embeds.as_view(),
            rng,
        );

        let quantized = quantizer.quantize_batch(embeds.as_view());

        QuantizedArray {
            quantizer,
            quantized,
            norms,
        }
    }
}

fn padding<T>(pos: u64) -> u64 {
    let size = size_of::<T>() as u64;
    size - (pos % size)
}

#[cfg(test)]
mod tests {
    use std::io::{Cursor, Read, Seek, SeekFrom};

    use byteorder::{LittleEndian, ReadBytesExt};
    use ndarray::Array2;
    use reductive::pq::PQ;

    use crate::io::private::{ReadChunk, WriteChunk};
    use crate::storage::{NdArray, Quantize, QuantizedArray, StorageView};

    const N_ROWS: usize = 100;
    const N_COLS: usize = 100;

    fn test_ndarray() -> NdArray {
        let test_data = Array2::from_shape_fn((N_ROWS, N_COLS), |(r, c)| {
            r as f32 * N_COLS as f32 + c as f32
        });

        NdArray(test_data)
    }

    fn test_quantized_array(norms: bool) -> QuantizedArray {
        let ndarray = test_ndarray();
        ndarray.quantize::<PQ<f32>>(10, 4, 5, 1, norms)
    }

    fn read_chunk_size(read: &mut impl Read) -> u64 {
        // Skip identifier.
        read.read_u32::<LittleEndian>().unwrap();

        // Return chunk length.
        read.read_u64::<LittleEndian>().unwrap()
    }

    #[test]
    fn ndarray_correct_chunk_size() {
        let check_arr = test_ndarray();
        let mut cursor = Cursor::new(Vec::new());
        check_arr.write_chunk(&mut cursor).unwrap();
        cursor.seek(SeekFrom::Start(0)).unwrap();

        let chunk_size = read_chunk_size(&mut cursor);
        assert_eq!(
            cursor.read_to_end(&mut Vec::new()).unwrap(),
            chunk_size as usize
        );
    }

    #[test]
    fn ndarray_write_read_roundtrip() {
        let check_arr = test_ndarray();
        let mut cursor = Cursor::new(Vec::new());
        check_arr.write_chunk(&mut cursor).unwrap();
        cursor.seek(SeekFrom::Start(0)).unwrap();
        let arr = NdArray::read_chunk(&mut cursor).unwrap();
        assert_eq!(arr.view(), check_arr.view());
    }

    #[test]
    fn quantized_array_correct_chunk_size() {
        let check_arr = test_quantized_array(false);
        let mut cursor = Cursor::new(Vec::new());
        check_arr.write_chunk(&mut cursor).unwrap();
        cursor.seek(SeekFrom::Start(0)).unwrap();

        let chunk_size = read_chunk_size(&mut cursor);
        assert_eq!(
            cursor.read_to_end(&mut Vec::new()).unwrap(),
            chunk_size as usize
        );
    }

    #[test]
    fn quantized_array_norms_correct_chunk_size() {
        let check_arr = test_quantized_array(true);
        let mut cursor = Cursor::new(Vec::new());
        check_arr.write_chunk(&mut cursor).unwrap();
        cursor.seek(SeekFrom::Start(0)).unwrap();

        let chunk_size = read_chunk_size(&mut cursor);
        assert_eq!(
            cursor.read_to_end(&mut Vec::new()).unwrap(),
            chunk_size as usize
        );
    }

    #[test]
    fn quantized_array_read_write_roundtrip() {
        let check_arr = test_quantized_array(true);
        let mut cursor = Cursor::new(Vec::new());
        check_arr.write_chunk(&mut cursor).unwrap();
        cursor.seek(SeekFrom::Start(0)).unwrap();
        let arr = QuantizedArray::read_chunk(&mut cursor).unwrap();
        assert_eq!(arr.quantizer, check_arr.quantizer);
        assert_eq!(arr.quantized, check_arr.quantized);
    }
}