1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
extern crate alloc;
use alloc::{boxed::Box, vec::Vec};
use core::fmt::{Display, Formatter};
use core::ops::Range;
use std::ops::RangeInclusive;

/// Axes used in reduce and permute operations.
/// Just Box<[usize]>.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct Axes(pub(crate) Box<[usize]>);

impl Axes {
    /// Number of axes
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Is there no axes?
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }

    /// Iterate over axes
    pub fn iter(&self) -> impl Iterator<Item = &usize> + '_ {
        self.into_iter()
    }

    /// Returns the indices that sort axes in ascending order by value.
    pub fn argsort(&self) -> Axes {
        let mut axes: Box<[(usize, usize)]> = self.0.iter().copied().enumerate().collect();
        axes.sort_by_key(|(_, v)| *v);
        Axes(axes.iter().map(|(k, _)| *k).collect())
    }

    /// Does self contain axis a?
    pub fn contains(&self, a: usize) -> bool {
        self.0.contains(&a)
    }

    /// Get self as vector i64
    #[must_use]
    pub fn vi64(&self) -> Vec<i64> {
        self.0.iter().map(|x| *x as i64).collect()
    }

    /// Permute shape's dimensions with axes
    /// # Panics
    /// Panics if axes is incorrect.
    #[must_use]
    pub fn permute(&self, axes: &Axes) -> Self {
        debug_assert!(axes.iter().all(|a| *a < self.len()));
        Self(axes.into_iter().map(|axis| self.0[*axis]).collect())
    }
}

impl Display for Axes {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        f.write_fmt(format_args!("{self:?}"))
    }
}

impl From<Axes> for Vec<usize> {
    fn from(val: Axes) -> Self {
        val.0.into()
    }
}

impl<'a> IntoIterator for &'a Axes {
    type Item = &'a usize;
    type IntoIter = <&'a [usize] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self.0.iter()
    }
}

/// # `IntoAxes`
/// Convert value into axes
/// RangeFull (..) is all axes
#[allow(clippy::module_name_repetitions)]
pub trait IntoAxes {
    /// Convert value into axes
    /// ```
    /// use zyx_core::axes::IntoAxes;
    /// let ax = [2, 3, 1];
    /// let axes = ax.into_axes(4);
    /// ```
    fn into_axes(self, rank: usize) -> Axes;
}

impl IntoAxes for Axes {
    fn into_axes(self, rank: usize) -> Axes {
        debug_assert!(self.iter().all(|a| *a < rank));
        self
    }
}

impl IntoAxes for &Axes {
    fn into_axes(self, rank: usize) -> Axes {
        debug_assert!(self.iter().all(|a| *a < rank));
        self.clone()
    }
}

impl IntoAxes for Vec<usize> {
    fn into_axes(self, rank: usize) -> Axes {
        debug_assert!(self.iter().all(|a| *a < rank));
        Axes(self.into_boxed_slice())
    }
}

impl IntoAxes for Box<[usize]> {
    fn into_axes(self, rank: usize) -> Axes {
        debug_assert!(self.iter().all(|a| *a < rank));
        Axes(self)
    }
}

impl IntoAxes for Range<usize> {
    fn into_axes(mut self, rank: usize) -> Axes {
        debug_assert!(self.all(|a| a < rank));
        Axes(self.collect())
    }
}

impl IntoAxes for Range<i64> {
    fn into_axes(mut self, rank: usize) -> Axes {
        debug_assert!(self.all(|a| if a > 0 {
            (a as usize) < rank
        } else {
            ((-a) as usize) <= rank
        }));
        Axes(
            (((self.start + i64::try_from(rank).unwrap()) as usize % rank)
                ..((self.end + i64::try_from(rank).unwrap()) as usize % rank))
                .collect(),
        )
    }
}

impl IntoAxes for RangeInclusive<i64> {
    fn into_axes(self, rank: usize) -> Axes {
        (&*(self.collect::<Box<[i64]>>())).into_axes(rank)
    }
}

impl IntoAxes for &RangeInclusive<i64> {
    fn into_axes(self, rank: usize) -> Axes {
        (&*(self.clone().collect::<Box<[i64]>>())).into_axes(rank)
    }
}

impl IntoAxes for core::ops::RangeFull {
    fn into_axes(self, rank: usize) -> Axes {
        Axes((0..rank).collect())
    }
}

impl IntoAxes for &[i64] {
    fn into_axes(self, rank: usize) -> Axes {
        debug_assert!(self.iter().all(|a| if *a > 0 {
            (*a as usize) < rank
        } else {
            ((-*a) as usize) <= rank
        }));
        Axes(
            self.iter()
                .map(|x| (x + i64::try_from(rank).unwrap()) as usize % rank)
                .collect(),
        )
    }
}

impl IntoAxes for i64 {
    fn into_axes(self, rank: usize) -> Axes {
        debug_assert!(if self > 0 {
            (self as usize) < rank
        } else {
            ((-self) as usize) <= rank
        });
        [self].into_axes(rank)
    }
}

impl<const N: usize> IntoAxes for [i64; N] {
    fn into_axes(self, rank: usize) -> Axes {
        let axes: &[i64] = &self;
        axes.into_axes(rank)
    }
}

impl core::ops::Index<i64> for Axes {
    type Output = usize;
    fn index(&self, index: i64) -> &Self::Output {
        debug_assert!(if index > 0 {
            (index as usize) < self.len()
        } else {
            (-index) as usize <= self.len()
        });
        let rank = self.len();
        self.0.get((index + rank as i64) as usize % rank).unwrap()
    }
}