1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#![deny(missing_docs)]

//! `zlo` is a crate for encoding and decoding using a bit-compact
//! serialization strategy.
//!
//! ### Using Basic Functions
//!
//! ```rust
//! extern crate zlo;
//! use zlo::{serialize, deserialize, Bounded};
//! fn main() {
//!     // The object that we will serialize.
//!     let target = Some("hello world".to_string());
//!     // The maximum size of the encoded message.
//!     let limit = Bounded(20);
//!
//!     let encoded: Vec<u8>        = serialize(&target, limit).unwrap();
//!     let decoded: Option<String> = deserialize(&encoded[..]).unwrap();
//!     assert_eq!(target, decoded);
//! }
//! ```

extern crate serde;

pub use de::Deserializer;
pub use ser::Serializer;
use ser::SizeChecker;

use std::io::Read;
use std::io::Write;
use std::{error, fmt, io, result};

mod ser;
mod de;

/// The result of a serialization or deserialization operation.
pub type Result<T> = result::Result<T, Error>;

/// The kind of error that can be produced during a serialization or
/// deserialization.
#[derive(Debug)]
pub enum Error {
    /// If the error stems from the reader/writer that is being used during
    /// (de)serialization, that error will be stored and returned here.
    Io(io::Error),
    /// If the bytes in the reader are not decodable because of an invalid
    /// encoding, this error will be returned.  This error is only possible if a
    /// stream is corrupted.  A stream produced from `encode` or `encode_into`
    /// should **never** produce an InvalidEncoding error.
    InvalidEncoding {
        #[allow(missing_docs)]
        desc: &'static str,
        #[allow(missing_docs)]
        detail: Option<String>,
    },
    /// If (de)serializing a message takes more than the provided size limit,
    /// this error is returned.
    SizeLimit,
    /// zlo can not encode sequences of unknown length (like iterators).
    SequenceMustHaveLength,
    /// A custom error message from Serde.
    Custom(String),
    #[doc(hidden)]
    __Nonexhaustive,
}

impl error::Error for Error {
    fn description(&self) -> &str {
        match *self {
            Error::Io(ref err) => error::Error::description(err),
            Error::InvalidEncoding { desc, .. } => desc,
            Error::SequenceMustHaveLength => "zlo can't encode infinite sequences",
            Error::SizeLimit => "the size limit for decoding has been reached",
            Error::Custom(ref msg) => msg,
            Error::__Nonexhaustive => unreachable!(),
        }
    }

    fn cause(&self) -> Option<&error::Error> {
        match *self {
            Error::Io(ref err) => Some(err),
            Error::InvalidEncoding { .. } => None,
            Error::SequenceMustHaveLength => None,
            Error::SizeLimit => None,
            Error::Custom(_) => None,
            Error::__Nonexhaustive => unreachable!(),
        }
    }
}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Error {
        Error::Io(err).into()
    }
}

impl fmt::Display for Error {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::Io(ref ioerr) => write!(fmt, "Io: {}", ioerr),
            Error::InvalidEncoding { desc, detail: None } =>
                write!(fmt, "InvalidEncoding: {}", desc),
            Error::InvalidEncoding {
                desc, detail: Some(ref detail),
            } => write!(fmt, "InvalidEncoding: {} ({})", desc, detail),
            Error::SequenceMustHaveLength =>
                write!(fmt, "zlo can only encode sequences and maps that have \
                             a knowable size ahead of time."),
            Error::SizeLimit => write!(fmt, "SizeLimit"),
            Error::Custom(ref s) => s.fmt(fmt),
            Error::__Nonexhaustive => unreachable!(),
        }
    }
}

impl serde::de::Error for Error {
    fn custom<T: fmt::Display>(desc: T) -> Error {
        Error::Custom(desc.to_string()).into()
    }
}

impl serde::ser::Error for Error {
    fn custom<T: fmt::Display>(msg: T) -> Self {
        Error::Custom(msg.to_string()).into()
    }
}

/// Serializes an object directly into a `Writer`.
///
/// If the serialization would take more bytes than allowed by `size_limit`, an
/// error is returned and *no bytes* will be written into the `Writer`.
///
/// If this returns an `Error` (other than SizeLimit), assume that the writer is
/// in an invalid state, as writing could bail out in the middle of serializing.
pub fn serialize_into<W, T: ?Sized, S>(
    writer: W,
    value: &T,
    size_limit: S,
) -> Result<()>
where
    W: Write,
    T: serde::Serialize,
    S: SizeLimit,
{
    if let Some(limit) = size_limit.limit() {
        serialized_size_bounded(value, limit)
            .ok_or(Error::SizeLimit)?;
    }

    let mut serializer = Serializer::<_>::new(writer);
    serde::Serialize::serialize(value, &mut serializer)?;
    serializer.finish().map_err(|(_, e)| e)?;
    Ok(())
}

/// Serializes a serializable object into a `Vec` of bytes.
///
/// If the serialization would take more bytes than allowed by `size_limit`,
/// an error is returned.
pub fn serialize<T: ?Sized, S>(value: &T, size_limit: S) -> Result<Vec<u8>>
where
    T: serde::Serialize,
    S: SizeLimit,
{
    let mut writer = match size_limit.limit() {
        Some(size_limit) => {
            let actual_size = serialized_size_bounded(value, size_limit)
                .ok_or(Error::SizeLimit)?;
            Vec::with_capacity(actual_size as usize)
        }
        None => Vec::with_capacity(serialized_size(value) as usize)
    };
    serialize_into(&mut writer, value, Infinite)?;
    Ok(writer)
}

impl SizeLimit for CountSize {
    fn add(&mut self, c: u64) -> Result<()> {
        self.total += c;
        if let Some(limit) = self.limit {
            if self.total > limit {
                return Err(Error::SizeLimit);
            }
        }
        Ok(())
    }

    fn limit(&self) -> Option<u64> {
        unreachable!()
    }
}

/// Returns the size that an object would be if serialized using zlo.
///
/// It can be useful for preallocating buffers if thats your style.
pub fn serialized_size<T: ?Sized>(value: &T) -> u64
where
    T: serde::Serialize,
{
    let mut size_counter = SizeChecker {
        size_limit: CountSize {
            total: 0,
            limit: None,
        },
    };

    value.serialize(&mut size_counter).ok();
    size_counter.size_limit.total
}

/// Given a maximum size limit, check how large an object would be if it were to
/// be serialized.
///
/// If it can be serialized in `max` or fewer bytes, that number will be
/// returned inside `Some`.  If it goes over bounds, then None is returned.
pub fn serialized_size_bounded<T: ?Sized>(value: &T, max: u64) -> Option<u64>
where
    T: serde::Serialize,
{
    let mut size_counter = SizeChecker {
        size_limit: CountSize {
            total: 0,
            limit: Some(max),
        },
    };

    match value.serialize(&mut size_counter) {
        Ok(_) => Some(size_counter.size_limit.total),
        Err(_) => None,
    }
}

/// Deserializes an object directly from a `Buffer`ed Reader.
///
/// If the provided `SizeLimit` is reached, the deserialization will bail
/// immediately.  A SizeLimit can help prevent an attacker from flooding your
/// server with a neverending stream of values that runs your server out of
/// memory.
///
/// If this returns an `Error`, assume that the buffer that you passed in is in
/// an invalid state, as the error could be returned during any point in the
/// reading.
pub fn deserialize_from<R, T, S>(reader: R, size_limit: S) -> Result<T>
where
    R: Read,
    T: serde::de::DeserializeOwned,
    S: SizeLimit,
{
    let mut deserializer = Deserializer::<_, S>::new(reader, size_limit);
    serde::Deserialize::deserialize(&mut deserializer)
}

/// Deserializes a slice of bytes into an object.
///
/// This method does not have a size-limit because if you already have the bytes
/// in memory, then you don't gain anything by having a limiter.
pub fn deserialize<'a, T>(bytes: &'a [u8]) -> Result<T>
where
    T: serde::de::Deserialize<'a>,
{
    use std::io::Cursor;
    let reader = Cursor::new(&bytes);
    let mut deserializer = Deserializer::new(reader, Infinite);
    serde::Deserialize::deserialize(&mut deserializer)
}

/// A limit on the amount of bits that can be read or written.
///
/// Size limits are an incredibly important part of both encoding and decoding.
///
/// In order to prevent DOS attacks on a decoder, it is important to limit the
/// amount of bits that a single encoded message can be; otherwise, if you are
/// decoding bits right off of a TCP stream for example, it would be possible
/// for an attacker to flood your server with a 3TB vec, causing the decoder to
/// run out of memory and crash your application!  Because of this, you can
/// provide a maximum-number-of-bits that can be read during decoding, and the
/// decoder will explicitly fail if it has to read any more than that.
///
/// On the other side, you want to make sure that you aren't encoding a message
/// that is larger than your decoder expects.  By supplying a size limit to an
/// encoding function, the encoder will verify that the structure can be encoded
/// within that limit.  This verification occurs before any bits are written to
/// the Writer, so recovering from an error is easy.
pub trait SizeLimit: private::Sealed {
    /// Tells the SizeLimit that a certain number of bits has been read or
    /// written.  Returns Err if the limit has been exceeded.
    fn add(&mut self, n: u64) -> Result<()>;
    /// Returns the hard limit (if one exists)
    fn limit(&self) -> Option<u64>;
}

/// A SizeLimit that restricts serialized or deserialized messages from
/// exceeding a certain bit length.
#[derive(Copy, Clone)]
pub struct Bounded(u64);

impl Bounded {
    /// Create new bit limit.
    pub fn new_bits(lim: u64) -> Self {
        Self { 0: lim }
    }

    /// Create new byte limit.
    pub fn new_bytes(lim: u64) -> Self {
        assert!(lim <= ::std::u64::MAX / 8, "lim must be representable \
                                             as bit count in 64 bits");
        Self { 0: lim * 8 }
    }
}

/// A SizeLimit without a limit!
/// Use this if you don't care about the size of encoded or decoded messages.
#[derive(Copy, Clone)]
pub struct Infinite;

struct CountSize {
    total: u64,
    limit: Option<u64>,
}

impl SizeLimit for Bounded {
    #[inline(always)]
    fn add(&mut self, n: u64) -> Result<()> {
        if self.0 >= n {
            self.0 -= n;
            Ok(())
        } else {
            Err(Error::SizeLimit)
        }
    }

    #[inline(always)]
    fn limit(&self) -> Option<u64> {
        Some(self.0)
    }
}

impl SizeLimit for Infinite {
    #[inline(always)]
    fn add(&mut self, _: u64) -> Result<()> {
        Ok(())
    }

    #[inline(always)]
    fn limit(&self) -> Option<u64> {
        None
    }
}

mod private {
    pub trait Sealed {}

    impl Sealed for super::Infinite {}
    impl Sealed for super::Bounded {}
    impl Sealed for super::CountSize {}
}