1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
//! A fast generator of discrete, bounded
//! [Zipf-distributed](https://en.wikipedia.org/wiki/Zipf's_law) random numbers.
//!
//! For a random variable `X` whose values are distributed according to this distribution, the
//! probability mass function is given by
//!
//! ```ignore
//! P(X = k) = H(N,s) * 1 / k^s for k = 1,2,...,N
//! ```
//!
//! `H(N,s)` is the normalizing constant which corresponds to the generalized harmonic number
//! of order `N` of `s`.
//!
//! # Example
//!
//! ```
//! use rand::distributions::Distribution;
//!
//! let mut rng = rand::thread_rng();
//! let mut zipf = zipf::ZipfDistribution::new(1000, 1.03).unwrap();
//! let sample = zipf.sample(&mut rng);
//! ```
//!
//! This implementation is effectively a direct port of Apache Common's
//! [RejectionInversionZipfSampler][ref], written in Java. It is based on the method described by
//! Wolfgang Hörmann and Gerhard Derflinger in [*Rejection-inversion to generate variates from
//! monotone discrete distributions*](https://dl.acm.org/citation.cfm?id=235029) from *ACM
//! Transactions on Modeling and Computer Simulation (TOMACS) 6.3 (1996)*.
//!
//! [ref]: https://github.com/apache/commons-rng/blob/6a1b0c16090912e8fc5de2c1fb5bd8490ac14699/commons-rng-sampling/src/main/java/org/apache/commons/rng/sampling/distribution/RejectionInversionZipfSampler.java

#![warn(rust_2018_idioms)]

use rand::Rng;

/// Random number generator that generates Zipf-distributed random numbers using rejection
/// inversion.
#[derive(Clone, Copy)]
pub struct ZipfDistribution {
    /// Number of elements
    num_elements: f64,
    /// Exponent parameter of the distribution
    exponent: f64,
    /// `hIntegral(1.5) - 1}`
    h_integral_x1: f64,
    /// `hIntegral(num_elements + 0.5)}`
    h_integral_num_elements: f64,
    /// `2 - hIntegralInverse(hIntegral(2.5) - h(2)}`
    s: f64,
}

impl ZipfDistribution {
    /// Creates a new [Zipf-distributed](https://en.wikipedia.org/wiki/Zipf's_law)
    /// random number generator.
    ///
    /// Note that both the number of elements and the exponent must be greater than 0.
    pub fn new(num_elements: usize, exponent: f64) -> Result<Self, ()> {
        if num_elements == 0 {
            return Err(());
        }
        if exponent <= 0f64 {
            return Err(());
        }

        let z = ZipfDistribution {
            num_elements: num_elements as f64,
            exponent,
            h_integral_x1: ZipfDistribution::h_integral(1.5, exponent) - 1f64,
            h_integral_num_elements: ZipfDistribution::h_integral(
                num_elements as f64 + 0.5,
                exponent,
            ),
            s: 2f64
                - ZipfDistribution::h_integral_inv(
                    ZipfDistribution::h_integral(2.5, exponent)
                        - ZipfDistribution::h(2f64, exponent),
                    exponent,
                ),
        };

        // populate cache

        Ok(z)
    }
}

impl ZipfDistribution {
    fn next<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
        // The paper describes an algorithm for exponents larger than 1 (Algorithm ZRI).
        //
        // The original method uses
        //   H(x) = (v + x)^(1 - q) / (1 - q)
        // as the integral of the hat function.
        //
        // This function is undefined for q = 1, which is the reason for the limitation of the
        // exponent.
        //
        // If instead the integral function
        //   H(x) = ((v + x)^(1 - q) - 1) / (1 - q)
        // is used, for which a meaningful limit exists for q = 1, the method works for all
        // positive exponents.
        //
        // The following implementation uses v = 0 and generates integral number in the range [1,
        // num_elements]. This is different to the original method where v is defined to
        // be positive and numbers are taken from [0, i_max]. This explains why the implementation
        // looks slightly different.

        let hnum = self.h_integral_num_elements;

        loop {
            use std::cmp;
            let u: f64 = hnum + rng.gen::<f64>() * (self.h_integral_x1 - hnum);
            // u is uniformly distributed in (h_integral_x1, h_integral_num_elements]

            let x: f64 = ZipfDistribution::h_integral_inv(u, self.exponent);

            // Limit k to the range [1, num_elements] if it would be outside
            // due to numerical inaccuracies.
            let k64 = x.max(1.0).min(self.num_elements);
            // float -> integer rounds towards zero
            let k = cmp::max(1, k64 as usize);

            // Here, the distribution of k is given by:
            //
            //   P(k = 1) = C * (hIntegral(1.5) - h_integral_x1) = C
            //   P(k = m) = C * (hIntegral(m + 1/2) - hIntegral(m - 1/2)) for m >= 2
            //
            // where C = 1 / (h_integral_num_elements - h_integral_x1)
            if k64 - x <= self.s
                || u >= ZipfDistribution::h_integral(k64 + 0.5, self.exponent)
                    - ZipfDistribution::h(k64, self.exponent)
            {
                // Case k = 1:
                //
                //   The right inequality is always true, because replacing k by 1 gives
                //   u >= hIntegral(1.5) - h(1) = h_integral_x1 and u is taken from
                //   (h_integral_x1, h_integral_num_elements].
                //
                //   Therefore, the acceptance rate for k = 1 is P(accepted | k = 1) = 1
                //   and the probability that 1 is returned as random value is
                //   P(k = 1 and accepted) = P(accepted | k = 1) * P(k = 1) = C = C / 1^exponent
                //
                // Case k >= 2:
                //
                //   The left inequality (k - x <= s) is just a short cut
                //   to avoid the more expensive evaluation of the right inequality
                //   (u >= hIntegral(k + 0.5) - h(k)) in many cases.
                //
                //   If the left inequality is true, the right inequality is also true:
                //     Theorem 2 in the paper is valid for all positive exponents, because
                //     the requirements h'(x) = -exponent/x^(exponent + 1) < 0 and
                //     (-1/hInverse'(x))'' = (1+1/exponent) * x^(1/exponent-1) >= 0
                //     are both fulfilled.
                //     Therefore, f(x) = x - hIntegralInverse(hIntegral(x + 0.5) - h(x))
                //     is a non-decreasing function. If k - x <= s holds,
                //     k - x <= s + f(k) - f(2) is obviously also true which is equivalent to
                //     -x <= -hIntegralInverse(hIntegral(k + 0.5) - h(k)),
                //     -hIntegralInverse(u) <= -hIntegralInverse(hIntegral(k + 0.5) - h(k)),
                //     and finally u >= hIntegral(k + 0.5) - h(k).
                //
                //   Hence, the right inequality determines the acceptance rate:
                //   P(accepted | k = m) = h(m) / (hIntegrated(m+1/2) - hIntegrated(m-1/2))
                //   The probability that m is returned is given by
                //   P(k = m and accepted) = P(accepted | k = m) * P(k = m)
                //                         = C * h(m) = C / m^exponent.
                //
                // In both cases the probabilities are proportional to the probability mass
                // function of the Zipf distribution.

                return k;
            }
        }
    }
}

impl rand::distributions::Distribution<usize> for ZipfDistribution {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
        self.next(rng)
    }
}

use std::fmt;
impl fmt::Debug for ZipfDistribution {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        f.debug_struct("ZipfDistribution")
            .field("e", &self.exponent)
            .field("n", &self.num_elements)
            .finish()
    }
}

impl ZipfDistribution {
    /// Computes `H(x)`, defined as
    ///
    ///  - `(x^(1 - exponent) - 1) / (1 - exponent)`, if `exponent != 1`
    ///  - `log(x)`, if `exponent == 1`
    ///
    /// `H(x)` is an integral function of `h(x)`, the derivative of `H(x)` is `h(x)`.
    fn h_integral(x: f64, exponent: f64) -> f64 {
        let log_x = x.ln();
        helper2((1f64 - exponent) * log_x) * log_x
    }

    /// Computes `h(x) = 1 / x^exponent`
    fn h(x: f64, exponent: f64) -> f64 {
        (-exponent * x.ln()).exp()
    }

    /// The inverse function of `H(x)`.
    /// Returns the `y` for which `H(y) = x`.
    fn h_integral_inv(x: f64, exponent: f64) -> f64 {
        let mut t: f64 = x * (1f64 - exponent);
        if t < -1f64 {
            // Limit value to the range [-1, +inf).
            // t could be smaller than -1 in some rare cases due to numerical errors.
            t = -1f64;
        }
        (helper1(t) * x).exp()
    }
}

/// Helper function that calculates `log(1 + x) / x`.
/// A Taylor series expansion is used, if x is close to 0.
fn helper1(x: f64) -> f64 {
    if x.abs() > 1e-8 {
        x.ln_1p() / x
    } else {
        1f64 - x * (0.5 - x * (1.0 / 3.0 - 0.25 * x))
    }
}

/// Helper function to calculate `(exp(x) - 1) / x`.
/// A Taylor series expansion is used, if x is close to 0.
fn helper2(x: f64) -> f64 {
    if x.abs() > 1e-8 {
        x.exp_m1() / x
    } else {
        1f64 + x * 0.5 * (1f64 + x * 1.0 / 3.0 * (1f64 + 0.25 * x))
    }
}