1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
use base64::{decode, encode};
use basex_rs::{BaseX, Decode, Encode, BITCOIN};
use bitcoin::consensus::encode::{serialize, VarInt};
use ripemd::Ripemd160;
use secp256k1::Secp256k1;
use sha2::{Digest, Sha256};

pub mod error;
pub use error::CryptError as Error;

fn sha256d(input: &[u8]) -> Vec<u8> {
  let mut hasher1 = Sha256::default();
  hasher1.update(input);
  let mut hasher2 = Sha256::default();
  hasher2.update(hasher1.finalize());
  return hasher2.finalize().into_iter().collect();
}

fn hash160(input: &[u8]) -> Vec<u8> {
  let mut hasher1 = Sha256::default();
  hasher1.update(input);
  let mut hasher2 = Ripemd160::default();
  hasher2.update(hasher1.finalize());
  return hasher2.finalize().into_iter().collect();
}

fn serialize_address(public_key: secp256k1::PublicKey) -> String {
  let serialized = public_key.serialize_uncompressed();

  let hashed = hash160(&serialized);
  let version = [0u8];
  let hashed2 = sha256d(&[&version, hashed.as_slice()].concat());
  let out = &[&version, hashed.as_slice(), hashed2.get(0..4).unwrap()].concat();

  BaseX::new(BITCOIN).encode(out)
}

static MSG_SIGN_PREFIX: &'static [u8] = b"\x18Bitcoin Signed Message:\n";

pub fn msg_hash(msg: &[u8]) -> Vec<u8> {
  let bytes;
  bytes = serialize(&VarInt(msg.len() as u64));
  sha256d(&[MSG_SIGN_PREFIX, bytes.as_slice(), msg].concat())
}

/// Verifies that sign is a valid sign for given data and address
/// ```
/// use zeronet_cryptography::verify;
///
/// let data = "Testmessage";
/// let address = "1HZwkjkeaoZfTSaJxDw6aKkxp45agDiEzN";
/// let signature = "G+Hnv6dXxOAmtCj8MwQrOh5m5bV9QrmQi7DSGKiRGm9TWqWP3c5uYxUI/C/c+m9+LtYO26GbVnvuwu7hVPpUdow=";
///
/// match verify(data, address, signature) {
/// 	Ok(_) => println!("Signature is valid."),
/// 	Err(_) => println!("Signature is invalid."),
/// }
/// ```
pub fn verify<T: Into<Vec<u8>>>(data: T, valid_address: &str, sign: &str) -> Result<(), Error> {
  let sig = decode(sign)?;
  let hash = msg_hash(&data.into());

  let (sig_first, sig_r) = match sig.split_first() {
    Some(t) => t,
    None => return Err(Error::DecodeSignatureFailure),
  };

  let rec_id_v = (sig_first - 27) & 3;
  // This is not necessary for ZeroNet's cryptography
  // I've commented it out in case it is needed later.
  // // let rec_compact = (sig_first - 27) & 4 != 0;
  let rec_id = secp256k1::recovery::RecoveryId::from_i32(rec_id_v as i32)?;
  let signature = secp256k1::recovery::RecoverableSignature::from_compact(&sig_r, rec_id)?;
  let message = secp256k1::Message::from_slice(hash.as_slice())?;
  let secp = Secp256k1::new();
  let recovered: secp256k1::PublicKey = secp.recover(&message, &signature)?;
  let address = serialize_address(recovered);

  if address == valid_address {
    return Ok(());
  }
  return Err(Error::AddressMismatch(address));
}

/// Generate a valid signature for given data and private key
/// ```
/// use zeronet_cryptography::sign;
///
/// let data = "Testmessage";
/// let private_key = "5KYZdUEo39z3FPrtuX2QbbwGnNP5zTd7yyr2SC1j299sBCnWjss";
///
/// match sign(data, private_key) {
/// 	Ok(signature) => println!("The signature is {}", signature),
/// 	Err(_) => println!("An error occured during the signing process"),
/// }
/// ```
pub fn sign<T: Into<Vec<u8>>>(data: T, privkey: &str) -> Result<String, Error> {
  let hex = match BaseX::new(BITCOIN).decode(String::from(privkey)) {
    Some(h) => h,
    None => return Err(Error::PrivateKeyFailure),
  };
  let privkey = secp256k1::SecretKey::from_slice(&hex[1..33])?;
  let hash = msg_hash(&data.into());
  let message = secp256k1::Message::from_slice(hash.as_slice())?;
  let secp = Secp256k1::new();
  let sig = secp.sign_recoverable(&message, &privkey);
  let (rec_id, ser_c) = sig.serialize_compact();
  let ser_c_v: [&[u8]; 2] = [&[(rec_id.to_i32() + 27) as u8], &ser_c];

  let s = encode(&ser_c_v.concat());
  return Ok(s);
}

/// Create a valid key pair
/// ```
/// use zeronet_cryptography::create;
///
/// let (priv_key, pub_key) = create();
/// ```
pub fn create() -> (String, String) {
  let secp = secp256k1::Secp256k1::new();
  let mut rng = secp256k1::rand::thread_rng();
  let (priv_key, address) = secp.generate_keypair(&mut rng);

  let address = serialize_address(address);

  let slice: &[u8] = &priv_key[..];
  let mut bytes = vec![128];
  bytes.extend_from_slice(slice);
  bytes.extend_from_slice(&[92, 91, 187, 38]);
  let priv_key = BaseX::new(BITCOIN).encode(&bytes);

  (priv_key, address)
}

#[cfg(test)]
#[cfg_attr(tarpaulin, ignore)]
mod tests {
  use super::*;

  const PUBKEY: &str = "1HZwkjkeaoZfTSaJxDw6aKkxp45agDiEzN";
  const PRIVKEY: &str = "5KYZdUEo39z3FPrtuX2QbbwGnNP5zTd7yyr2SC1j299sBCnWjss";
  const MESSAGE: &str = "Testmessage";
  const SIGNATURE: &str =
    "G+Hnv6dXxOAmtCj8MwQrOh5m5bV9QrmQi7DSGKiRGm9TWqWP3c5uYxUI/C/c+m9+LtYO26GbVnvuwu7hVPpUdow=";
  const MSG_HASH: &[u8] = &[
    250, 76, 36, 63, 188, 246, 57, 82, 210, 190, 131, 30, 80, 21, 194, 116, 202, 29, 102, 133, 20,
    205, 34, 11, 215, 177, 255, 148, 166, 130, 107, 161,
  ];

  #[test]
  fn test_msg_hash() {
    let result = msg_hash(MESSAGE.as_bytes());
    assert_eq!(result, MSG_HASH);
  }

  #[test]
  fn test_verification() {
    let result = verify(MESSAGE, PUBKEY, SIGNATURE);
    assert_eq!(result.is_ok(), true);

    let result = verify(MESSAGE.as_bytes(), PUBKEY, "i");
    assert_eq!(result.unwrap_err(), Error::DecodeSignatureFailure);
  }

  #[test]
  fn test_signing() {
    let result = super::sign(MESSAGE, PRIVKEY);
    assert_eq!(result.is_ok(), true);
    let result2 = super::verify(MESSAGE, PUBKEY, &result.unwrap());
    assert_eq!(result2.is_ok(), true);
  }

  #[test]
  fn test_creating() {
    let (priv_key, address) = super::create();
    let signature = super::sign(MESSAGE, &priv_key).unwrap();
    let result = super::verify(MESSAGE, &address, &signature);
    assert_eq!(result.is_ok(), true);
  }
}