1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Utilities for safe zero-copy parsing and serialization.
//!
//! This crate provides utilities which make it easy to perform zero-copy
//! parsing and serialization by allowing zero-copy conversion to/from byte
//! slices.
//!
//! This is enabled by three core marker traits, each of which can be derived
//! (e.g., `#[derive(FromBytes)]`):
//! - [`FromBytes`] indicates that a type may safely be converted from an
//!   arbitrary byte sequence
//! - [`AsBytes`] indicates that a type may safely be converted *to* a byte
//!   sequence
//! - [`Unaligned`] indicates that a type's alignment requirement is 1
//!
//! Types which implement a subset of these traits can then be converted to/from
//! byte sequences with little to no runtime overhead.
//!
//! Note that these traits are ignorant of byte order. For byte order-aware
//! types, see the [`byteorder`] module.
//!
//! # Features
//!
//! `alloc`: By default, `zerocopy` is `no_std`. When the `alloc` feature is
//! enabled, the `alloc` crate is added as a dependency, and some
//! allocation-related functionality is added.
//!
//! `simd`: When the `simd` feature is enabled, `FromBytes` and `AsBytes` impls
//! are emitted for all stable SIMD types which exist on the target platform.
//! Note that the layout of SIMD types is not yet stabilized, so these impls may
//! be removed in the future if layout changes make them invalid. For more
//! information, see the Unsafe Code Guidelines Reference page on the [Layout of
//! packed SIMD vectors][simd-layout].
//!
//! `simd-nightly`: Enables the `simd` feature and adds support for SIMD types
//! which are only available on nightly. Since these types are unstable, support
//! for any type may be removed at any point in the future.
//!
//! [simd-layout]: https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html

#![deny(missing_docs)]
#![cfg_attr(not(test), no_std)]
#![recursion_limit = "2048"]

pub mod byteorder;

pub use crate::byteorder::*;
pub use zerocopy_derive::*;

use core::cell::{Ref, RefMut};
use core::cmp::Ordering;
use core::fmt::{self, Debug, Display, Formatter};
use core::marker::PhantomData;
use core::mem;
use core::ops::{Deref, DerefMut};
use core::ptr;
use core::slice;

// This is a hack to allow derives of FromBytes, AsBytes, and Unaligned to work
// in this crate. They assume that zerocopy is linked as an extern crate, so
// they access items from it as `zerocopy::Xxx`. This makes that still work.
mod zerocopy {
    pub use crate::*;
}

// implement an unsafe trait for a range of container types
macro_rules! impl_for_composite_types {
    ($trait:ident) => {
        unsafe impl<T> $trait for PhantomData<T> {
            fn only_derive_is_allowed_to_implement_this_trait()
            where
                Self: Sized,
            {
            }
        }
        unsafe impl<T: $trait> $trait for [T] {
            fn only_derive_is_allowed_to_implement_this_trait()
            where
                Self: Sized,
            {
            }
        }
        unsafe impl $trait for () {
            fn only_derive_is_allowed_to_implement_this_trait()
            where
                Self: Sized,
            {
            }
        }
        unsafe impl<T: $trait, const N: usize> $trait for [T; N] {
            fn only_derive_is_allowed_to_implement_this_trait()
            where
                Self: Sized,
            {
            }
        }
    };
}

/// Implements `$trait` for one or more `$type`s.
macro_rules! impl_for_types {
    ($trait:ident, $type:ty) => (
        unsafe impl $trait for $type {
            fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
        }
    );
    ($trait:ident, $type:ty, $($types:ty),*) => (
        unsafe impl $trait for $type {
            fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
        }
        impl_for_types!($trait, $($types),*);
    );
}

/// Implements `$trait` for all signed and unsigned primitive types.
macro_rules! impl_for_primitives {
    ($trait:ident) => {
        impl_for_types!(
            $trait, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64
        );
    };
}

/// Types for which any byte pattern is valid.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(FromBytes)]`.
///
/// `FromBytes` types can safely be deserialized from an untrusted sequence of
/// bytes because any byte sequence corresponds to a valid instance of the type.
///
/// `FromBytes` is ignorant of byte order. For byte order-aware types, see the
/// [`byteorder`] module.
///
/// # Safety
///
/// If `T: FromBytes`, then unsafe code may assume that it is sound to treat any
/// initialized sequence of bytes of length `size_of::<T>()` as a `T`. If a type
/// is marked as `FromBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// If a type has the following properties, then it is safe to implement
/// `FromBytes` for that type:
/// - If the type is a struct:
///   - All of its fields must implement `FromBytes`
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields)
///   - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///     `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
///   - The maximum number of discriminants must be used (so that every possible
///     bit pattern is a valid one). Be very careful when using the `C`,
///     `usize`, or `isize` representations, as their size is
///     platform-dependent.
///
/// # Rationale
///
/// ## Why isn't an explicit representation required for structs?
///
/// Per the [Rust reference](reference),
/// > The representation of a type can change the padding between fields, but
/// does not change the layout of the fields themselves.
///
/// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations
///
/// Since the layout of structs only consists of padding bytes and field bytes,
/// a struct is soundly `FromBytes` if:
/// 1. its padding is soundly `FromBytes`, and
/// 2. its fields are soundly `FromBytes`.
///
/// The answer to the first question is always yes: padding bytes do not have
/// any validity constraints. A [discussion] of this question in the Unsafe Code
/// Guidelines Working Group concluded that it would be virtually unimaginable
/// for future versions of rustc to add validity constraints to padding bytes.
///
/// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174
///
/// Whether a struct is soundly `FromBytes` therefore solely depends on whether
/// its fields are `FromBytes`.
pub unsafe trait FromBytes {
    // NOTE: The Self: Sized bound makes it so that FromBytes is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Reads a copy of `Self` from `bytes`.
    ///
    /// If `bytes.len() != size_of::<Self>()`, `read_from` returns `None`.
    fn read_from<B: ByteSlice>(bytes: B) -> Option<Self>
    where
        Self: Sized,
    {
        let lv = LayoutVerified::<_, Unalign<Self>>::new_unaligned(bytes)?;
        Some(lv.read().into_inner())
    }

    /// Reads a copy of `Self` from the prefix of `bytes`.
    ///
    /// `read_from_prefix` reads a `Self` from the first `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns
    /// `None`.
    fn read_from_prefix<B: ByteSlice>(bytes: B) -> Option<Self>
    where
        Self: Sized,
    {
        let (lv, _suffix) = LayoutVerified::<_, Unalign<Self>>::new_unaligned_from_prefix(bytes)?;
        Some(lv.read().into_inner())
    }

    /// Reads a copy of `Self` from the suffix of `bytes`.
    ///
    /// `read_from_suffix` reads a `Self` from the last `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns
    /// `None`.
    fn read_from_suffix<B: ByteSlice>(bytes: B) -> Option<Self>
    where
        Self: Sized,
    {
        let (_prefix, lv) = LayoutVerified::<_, Unalign<Self>>::new_unaligned_from_suffix(bytes)?;
        Some(lv.read().into_inner())
    }

    /// Creates an instance of `Self` from zeroed bytes.
    fn new_zeroed() -> Self
    where
        Self: Sized,
    {
        unsafe {
            // Safe because FromBytes says all bit patterns (including zeroes)
            // are legal.
            core::mem::zeroed()
        }
    }

    /// Creates a `Box<Self>` from zeroed bytes.
    ///
    /// This function is useful for allocating large values on the heap and
    /// zero-initializing them, without ever creating a temporary instance of
    /// `Self` on the stack. For example, `<[u8; 1048576]>::new_box_zeroed()`
    /// will allocate `[u8; 1048576]` directly on the heap; it does not require
    /// storing `[u8; 1048576]` in a temporary variable on the stack.
    ///
    /// On systems that use a heap implementation that supports allocating from
    /// pre-zeroed memory, using `new_box_zeroed` (or related functions) may
    /// have performance benefits.
    ///
    /// Note that `Box<Self>` can be converted to `Arc<Self>` and other
    /// container types without reallocation.
    ///
    /// # Panics
    ///
    /// Panics if allocation of `size_of::<Self>()` bytes fails.
    #[cfg(any(test, feature = "alloc"))]
    fn new_box_zeroed() -> Box<Self>
    where
        Self: Sized,
    {
        // If T is a ZST, then return a proper boxed instance of it. There is no
        // allocation, but Box does require a correct dangling pointer.
        let layout = Layout::new::<Self>();
        if layout.size() == 0 {
            return Box::new(Self::new_zeroed());
        }

        unsafe {
            let ptr = alloc::alloc::alloc_zeroed(layout) as *mut Self;
            if ptr.is_null() {
                alloc::alloc::handle_alloc_error(layout);
            }
            Box::from_raw(ptr)
        }
    }

    /// Creates a `Box<[Self]>` (a boxed slice) from zeroed bytes.
    ///
    /// This function is useful for allocating large values of `[Self]` on the
    /// heap and zero-initializing them, without ever creating a temporary
    /// instance of `[Self; _]` on the stack. For example,
    /// `u8::new_box_slice_zeroed(1048576)` will allocate the slice directly on
    /// the heap; it does not require storing the slice on the stack.
    ///
    /// On systems that use a heap implementation that supports allocating from
    /// pre-zeroed memory, using `new_box_slice_zeroed` may have performance
    /// benefits.
    ///
    /// If `Self` is a zero-sized type, then this function will return a
    /// `Box<[Self]>` that has the correct `len`. Such a box cannot contain any
    /// actual information, but its `len()` property will report the correct
    /// value.
    ///
    /// # Panics
    ///
    /// * Panics if `size_of::<Self>() * len` overflows.
    /// * Panics if allocation of `size_of::<Self>() * len` bytes fails.
    #[cfg(any(test, feature = "alloc"))]
    fn new_box_slice_zeroed(len: usize) -> Box<[Self]>
    where
        Self: Sized,
    {
        // TODO(https://fxbug.dev/80757): Use Layout::repeat() when `alloc_layout_extra` is stabilized
        // This will intentionally panic if it overflows.
        unsafe {
            // from_size_align_unchecked() is sound because slice_len_bytes is
            // guaranteed to be properly aligned (we just multiplied it by
            // size_of::<T>(), which is guaranteed to be aligned).
            let layout = Layout::from_size_align_unchecked(
                size_of::<Self>().checked_mul(len).unwrap(),
                align_of::<Self>(),
            );
            if layout.size() != 0 {
                let ptr = alloc::alloc::alloc_zeroed(layout) as *mut Self;
                if ptr.is_null() {
                    alloc::alloc::handle_alloc_error(layout);
                }
                Box::from_raw(core::slice::from_raw_parts_mut(ptr, len))
            } else {
                // Box<[T]> does not allocate when T is zero-sized or when len
                // is zero, but it does require a non-null dangling pointer for
                // its allocation.
                Box::from_raw(core::slice::from_raw_parts_mut(
                    NonNull::<Self>::dangling().as_ptr(),
                    len,
                ))
            }
        }
    }
}

/// Types which are safe to treat as an immutable byte slice.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(AsBytes)]`.
///
/// `AsBytes` types can be safely viewed as a slice of bytes. In particular,
/// this means that, in any valid instance of the type, none of the bytes of the
/// instance are uninitialized. This precludes the following types:
/// - Structs with internal padding
/// - Unions in which not all variants have the same length
///
/// `AsBytes` is ignorant of byte order. For byte order-aware types, see the
/// [`byteorder`] module.
///
/// # Custom Derive Errors
///
/// Due to the way that the custom derive for `AsBytes` is implemented, you may
/// get an error like this:
///
/// ```text
/// error[E0080]: evaluation of constant value failed
///   --> lib.rs:1:10
///    |
///  1 | #[derive(AsBytes)]
///    |          ^^^^^^^ attempt to divide by zero
/// ```
///
/// This error means that the type being annotated has padding bytes, which is
/// illegal for `AsBytes` types. Consider either adding explicit struct fields
/// where those padding bytes would be or using `#[repr(packed)]`.
///
/// # Safety
///
/// If `T: AsBytes`, then unsafe code may assume that it is sound to treat any
/// instance of the type as an immutable `[u8]` of length `size_of::<T>()`. If a
/// type is marked as `AsBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// If a type has the following properties, then it is safe to implement
/// `AsBytes` for that type
/// - If the type is a struct:
///   - It must have a defined representation (`repr(C)`, `repr(transparent)`,
///     or `repr(packed)`).
///   - All of its fields must be `AsBytes`
///   - Its layout must have no padding. This is always true for
///     `repr(transparent)` and `repr(packed)`. For `repr(C)`, see the layout
///     algorithm described in the [Rust Reference].
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields)
///   - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///     `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
///
/// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html
pub unsafe trait AsBytes {
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Gets the bytes of this value.
    ///
    /// `as_bytes` provides access to the bytes of this value as an immutable
    /// byte slice.
    fn as_bytes(&self) -> &[u8] {
        unsafe {
            // NOTE: This function does not have a Self: Sized bound.
            // size_of_val works for unsized values too.
            let len = mem::size_of_val(self);
            slice::from_raw_parts(self as *const Self as *const u8, len)
        }
    }

    /// Gets the bytes of this value mutably.
    ///
    /// `as_bytes_mut` provides access to the bytes of this value as a mutable
    /// byte slice.
    fn as_bytes_mut(&mut self) -> &mut [u8]
    where
        Self: FromBytes,
    {
        unsafe {
            // NOTE: This function does not have a Self: Sized bound.
            // size_of_val works for unsized values too.
            let len = mem::size_of_val(self);
            slice::from_raw_parts_mut(self as *mut Self as *mut u8, len)
        }
    }

    /// Writes a copy of `self` to `bytes`.
    ///
    /// If `bytes.len() != size_of_val(self)`, `write_to` returns `None`.
    fn write_to<B: ByteSliceMut>(&self, mut bytes: B) -> Option<()> {
        if bytes.len() != mem::size_of_val(self) {
            return None;
        }

        bytes.copy_from_slice(self.as_bytes());
        Some(())
    }

    /// Writes a copy of `self` to the prefix of `bytes`.
    ///
    /// `write_to_prefix` writes `self` to the first `size_of_val(self)` bytes
    /// of `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`.
    fn write_to_prefix<B: ByteSliceMut>(&self, mut bytes: B) -> Option<()> {
        let size = mem::size_of_val(self);
        if bytes.len() < size {
            return None;
        }

        bytes[..size].copy_from_slice(self.as_bytes());
        Some(())
    }

    /// Writes a copy of `self` to the suffix of `bytes`.
    ///
    /// `write_to_suffix` writes `self` to the last `size_of_val(self)` bytes
    /// of `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`.
    fn write_to_suffix<B: ByteSliceMut>(&self, mut bytes: B) -> Option<()> {
        let start = bytes.len().checked_sub(mem::size_of_val(self))?;
        bytes[start..].copy_from_slice(self.as_bytes());
        Some(())
    }
}

// Special case for bool (it is not included in `impl_for_primitives!`).
impl_for_types!(AsBytes, bool);

impl_for_primitives!(FromBytes);
impl_for_primitives!(AsBytes);
impl_for_composite_types!(FromBytes);
impl_for_composite_types!(AsBytes);

/// Types with no alignment requirement.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(Unaligned)]`.
///
/// If `T: Unaligned`, then `align_of::<T>() == 1`.
///
/// # Safety
///
/// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a
/// reference to `T` at any memory location regardless of alignment. If a type
/// is marked as `Unaligned` which violates this contract, it may cause
/// undefined behavior.
pub unsafe trait Unaligned {
    // NOTE: The Self: Sized bound makes it so that Unaligned is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;
}

impl_for_types!(Unaligned, u8, i8);
impl_for_composite_types!(Unaligned);

// SIMD support
//
// Per the Unsafe Code Guidelines Reference [1]:
//
//   Packed SIMD vector types are `repr(simd)` homogeneous tuple-structs
//   containing `N` elements of type `T` where `N` is a power-of-two and the
//   size and alignment requirements of `T` are equal:
//
//   ```rust
//   #[repr(simd)]
//   struct Vector<T, N>(T_0, ..., T_(N - 1));
//   ```
//
//   ...
//
//   The size of `Vector` is `N * size_of::<T>()` and its alignment is an
//   implementation-defined function of `T` and `N` greater than or equal to
//   `align_of::<T>()`.
//
//   ...
//
//   Vector elements are laid out in source field order, enabling random access
//   to vector elements by reinterpreting the vector as an array:
//
//   ```rust
//   union U {
//      vec: Vector<T, N>,
//      arr: [T; N]
//   }
//
//   assert_eq!(size_of::<Vector<T, N>>(), size_of::<[T; N]>());
//   assert!(align_of::<Vector<T, N>>() >= align_of::<[T; N]>());
//
//   unsafe {
//     let u = U { vec: Vector<T, N>(t_0, ..., t_(N - 1)) };
//
//     assert_eq!(u.vec.0, u.arr[0]);
//     // ...
//     assert_eq!(u.vec.(N - 1), u.arr[N - 1]);
//   }
//   ```
//
// Given this background, we can observe that:
// - The size and bit pattern requirements of a SIMD type are equivalent to the
//   equivalent array type. Thus, for any SIMD type whose primitive `T` is
//   `FromBytes`, that SIMD type is also `FromBytes`. The same holds for
//   `AsBytes`.
// - Since no upper bound is placed on the alignment, no SIMD type can be
//   guaranteed to be `Unaligned`.
//
// Also per [1]:
//
//   This chapter represents the consensus from issue #38. The statements in
//   here are not (yet) "guaranteed" not to change until an RFC ratifies them.
//
// See issue #38 [2]. While this behavior is not technically guaranteed, the
// likelihood that the behavior will change such that SIMD types are no longer
// `FromBytes` or `AsBytes` is next to zero, as that would defeat the entire
// purpose of SIMD types. Nonetheless, we put this behavior behind the `simd`
// Cargo feature, which requires consumers to opt into this stability hazard.
//
// [1] https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html
// [2] https://github.com/rust-lang/unsafe-code-guidelines/issues/38
#[cfg(feature = "simd")]
mod simd {
    /// Defines a module which implements `FromBytes` and `AsBytes` for a set of
    /// types from a module in `core::arch`.
    ///
    /// `$arch` is both the name of the defined module and the name of the
    /// module in `core::arch`, and `$typ` is the list of items from that module
    /// to implement `FromBytes` and `AsBytes` for.
    macro_rules! simd_arch_mod {
        ($arch:ident, $($typ:ident),*) => {
            mod $arch {
                use core::arch::$arch::{$($typ),*};

                use crate::*;

                impl_for_types!(FromBytes, $($typ),*);
                impl_for_types!(AsBytes, $($typ),*);
            }
        };
    }

    #[cfg(target_arch = "x86")]
    simd_arch_mod!(x86, __m128, __m128d, __m128i, __m256, __m256d, __m256i);
    #[cfg(target_arch = "x86_64")]
    simd_arch_mod!(x86_64, __m128, __m128d, __m128i, __m256, __m256d, __m256i);
    #[cfg(target_arch = "wasm32")]
    simd_arch_mod!(wasm32, v128);
    #[cfg(all(feature = "simd-nightly", target_arch = "powerpc"))]
    simd_arch_mod!(
        powerpc,
        vector_bool_long,
        vector_double,
        vector_signed_long,
        vector_unsigned_long
    );
    #[cfg(all(feature = "simd-nightly", target_arch = "powerpc64"))]
    simd_arch_mod!(
        powerpc64,
        vector_bool_long,
        vector_double,
        vector_signed_long,
        vector_unsigned_long
    );
    #[cfg(all(feature = "simd-nightly", target_arch = "aarch64"))]
    #[rustfmt::skip]
    simd_arch_mod!(
        aarch64, float32x2_t, float32x4_t, float64x1_t, float64x2_t, int8x8_t, int8x8x2_t,
        int8x8x3_t, int8x8x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int16x4_t,
        int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t,
        poly8x8x4_t, poly8x16_t, poly8x16x2_t, poly8x16x3_t, poly8x16x4_t, poly16x4_t, poly16x8_t,
        poly64x1_t, poly64x2_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t, uint8x16_t,
        uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t,
        uint64x1_t, uint64x2_t
    );
    #[cfg(all(feature = "simd-nightly", target_arch = "arm"))]
    #[rustfmt::skip]
    simd_arch_mod!(
        arm, float32x2_t, float32x4_t, int8x4_t, int8x8_t, int8x8x2_t, int8x8x3_t, int8x8x4_t,
        int8x16_t, int16x2_t, int16x4_t, int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t,
        poly8x8_t, poly8x8x2_t, poly8x8x3_t, poly8x8x4_t, poly8x16_t, poly16x4_t, poly16x8_t,
        poly64x1_t, poly64x2_t, uint8x4_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t,
        uint8x16_t, uint16x2_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t, uint64x1_t,
        uint64x2_t
    );
}

/// A type with no alignment requirement.
///
/// A `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
/// has the same size and ABI as `T`, but not necessarily the same alignment.
/// This is useful if a type with an alignment requirement needs to be read from
/// a chunk of memory which provides no alignment guarantees.
///
/// Since `Unalign` has no alignment requirement, the inner `T` may not be
/// properly aligned in memory, and so `Unalign` provides no way of getting a
/// reference to the inner `T`. Instead, the `T` may only be obtained by value
/// (see [`get`] and [`into_inner`]).
///
/// [`get`]: Unalign::get
/// [`into_inner`]: Unalign::into_inner
#[derive(FromBytes, Unaligned, Copy)]
#[repr(C, packed)]
pub struct Unalign<T>(T);

// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
// is not sufficient to implement `Clone` for `Unalign`.
impl<T: Copy> Clone for Unalign<T> {
    fn clone(&self) -> Unalign<T> {
        *self
    }
}

impl<T> Unalign<T> {
    /// Constructs a new `Unalign`.
    pub fn new(val: T) -> Unalign<T> {
        Unalign(val)
    }

    /// Consumes `self`, returning the inner `T`.
    pub fn into_inner(self) -> T {
        let Unalign(val) = self;
        val
    }

    /// Gets an unaligned raw pointer to the inner `T`.
    ///
    /// # Safety
    ///
    /// The returned raw pointer is not necessarily aligned to
    /// `align_of::<T>()`. Most functions which operate on raw pointers require
    /// those pointers to be aligned, so calling those functions with the result
    /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
    /// using some out-of-band mechanism. In general, the only functions which
    /// are safe to call with this pointer are which that are explicitly
    /// documented as being sound to use with an unaligned pointer, such as
    /// [`read_unaligned`].
    ///
    /// [`read_unaligned`]: core::ptr::read_unaligned
    pub fn get_ptr(&self) -> *const T {
        ptr::addr_of!(self.0)
    }

    /// Gets an unaligned mutable raw pointer to the inner `T`.
    ///
    /// # Safety
    ///
    /// The returned raw pointer is not necessarily aligned to
    /// `align_of::<T>()`. Most functions which operate on raw pointers require
    /// those pointers to be aligned, so calling those functions with the result
    /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
    /// using some out-of-band mechanism. In general, the only functions which
    /// are safe to call with this pointer are those which are explicitly
    /// documented as being sound to use with an unaligned pointer, such as
    /// [`read_unaligned`].
    ///
    /// [`read_unaligned`]: core::ptr::read_unaligned
    pub fn get_mut_ptr(&mut self) -> *mut T {
        ptr::addr_of_mut!(self.0)
    }
}

impl<T: Copy> Unalign<T> {
    /// Gets a copy of the inner `T`.
    pub fn get(&self) -> T {
        let Unalign(val) = *self;
        val
    }
}

// SAFETY: Since `T: AsBytes`, we know that it's safe to construct a `&[u8]`
// from an aligned `&T`. Since `&[u8]` itself has no alignment requirements, it
// must also be safe to construct a `&[u8]` from a `&T` at any address. Since
// `Unalign<T>` is `#[repr(packed)]`, everything about its layout except for its
// alignment is the same as `T`'s layout.
unsafe impl<T: AsBytes> AsBytes for Unalign<T> {
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized,
    {
    }
}

// Used in `transmute!` below.
#[doc(hidden)]
pub use core::mem::transmute as __real_transmute;

/// Safely transmutes a value of one type to a value of another type of the same
/// size.
///
/// The expression `$e` must have a concrete type, `T`, which implements
/// `AsBytes`. The `transmute!` expression must also have a concrete type, `U`
/// (`U` is inferred from the calling context), and `U` must implement
/// `FromBytes`.
///
/// Note that the `T` produced by the expression `$e` will *not* be dropped.
/// Semantically, its bits will be copied into a new value of type `U`, the
/// original `T` will be forgotten, and the value of type `U` will be returned.
#[macro_export]
macro_rules! transmute {
    ($e:expr) => {{
        // NOTE: This must be a macro (rather than a function with trait bounds)
        // because there's no way, in a generic context, to enforce that two
        // types have the same size. `core::mem::transmute` uses compiler magic
        // to enforce this so long as the types are concrete.

        let e = $e;
        if false {
            // This branch, though never taken, ensures that the type of `e` is
            // `AsBytes` and that the type of this macro invocation expression
            // is `FromBytes`.
            fn transmute<T: $crate::AsBytes, U: $crate::FromBytes>(_t: T) -> U {
                unreachable!()
            }
            transmute(e)
        } else {
            // `core::mem::transmute` ensures that the type of `e` and the type
            // of this macro invocation expression have the same size. We know
            // this transmute is safe thanks to the `AsBytes` and `FromBytes`
            // bounds enforced by the `false` branch.
            //
            // We use `$crate::__real_transmute` because we know it will always
            // be available for crates which are using the 2015 edition of Rust.
            // By contrast, if we were to use `std::mem::transmute`, this macro
            // would not work for such crates in `no_std` contexts, and if we
            // were to use `core::mem::transmute`, this macro would not work in
            // `std` contexts in which `core` was not manually imported. This is
            // not a problem for 2018 edition crates.
            unsafe { $crate::__real_transmute(e) }
        }
    }}
}

/// A length- and alignment-checked reference to a byte slice which can safely
/// be reinterpreted as another type.
///
/// `LayoutVerified` is a byte slice reference (`&[u8]`, `&mut [u8]`,
/// `Ref<[u8]>`, `RefMut<[u8]>`, etc) with the invaraint that the slice's length
/// and alignment are each greater than or equal to the length and alignment of
/// `T`. Using this invariant, it implements `Deref` for `T` so long as `T:
/// FromBytes` and `DerefMut` so long as `T: FromBytes + AsBytes`.
///
/// # Examples
///
/// `LayoutVerified` can be used to treat a sequence of bytes as a structured
/// type, and to read and write the fields of that type as if the byte slice
/// reference were simply a reference to that type.
///
/// ```rust
/// use zerocopy::{AsBytes, ByteSlice, ByteSliceMut, FromBytes, LayoutVerified, Unaligned};
///
/// #[derive(FromBytes, AsBytes, Unaligned)]
/// #[repr(C)]
/// struct UdpHeader {
///     src_port: [u8; 2],
///     dst_port: [u8; 2],
///     length: [u8; 2],
///     checksum: [u8; 2],
/// }
///
/// struct UdpPacket<B> {
///     header: LayoutVerified<B, UdpHeader>,
///     body: B,
/// }
///
/// impl<B: ByteSlice> UdpPacket<B> {
///     pub fn parse(bytes: B) -> Option<UdpPacket<B>> {
///         let (header, body) = LayoutVerified::new_unaligned_from_prefix(bytes)?;
///         Some(UdpPacket { header, body })
///     }
///
///     pub fn get_src_port(&self) -> [u8; 2] {
///         self.header.src_port
///     }
/// }
///
/// impl<B: ByteSliceMut> UdpPacket<B> {
///     pub fn set_src_port(&mut self, src_port: [u8; 2]) {
///         self.header.src_port = src_port;
///     }
/// }
/// ```
pub struct LayoutVerified<B, T: ?Sized>(B, PhantomData<T>);

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
{
    /// Constructs a new `LayoutVerified`.
    ///
    /// `new` verifies that `bytes.len() == size_of::<T>()` and that `bytes` is
    /// aligned to `align_of::<T>()`, and constructs a new `LayoutVerified`. If
    /// either of these checks fail, it returns `None`.
    #[inline]
    pub fn new(bytes: B) -> Option<LayoutVerified<B, T>> {
        if bytes.len() != mem::size_of::<T>() || !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Constructs a new `LayoutVerified` from the prefix of a byte slice.
    ///
    /// `new_from_prefix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and
    /// returns the remaining bytes to the caller. If either the length or
    /// alignment checks fail, it returns `None`.
    #[inline]
    pub fn new_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() || !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((LayoutVerified(bytes, PhantomData), suffix))
    }

    /// Constructs a new `LayoutVerified` from the suffix of a byte slice.
    ///
    /// `new_from_suffix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If either the length or alignment checks fail, it returns
    /// `None`.
    #[inline]
    pub fn new_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        let bytes_len = bytes.len();
        if bytes_len < mem::size_of::<T>() {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(bytes_len - mem::size_of::<T>());
        if !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        Some((prefix, LayoutVerified(bytes, PhantomData)))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
{
    /// Constructs a new `LayoutVerified` of a slice type.
    ///
    /// `new_slice` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and
    /// constructs a new `LayoutVerified`. If either of these checks fail, it
    /// returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        assert_ne!(mem::size_of::<T>(), 0);
        if bytes.len() % mem::size_of::<T>() != 0
            || !aligned_to(bytes.deref(), mem::align_of::<T>())
        {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Constructs a new `LayoutVerified` of a slice type from the prefix of a
    /// byte slice.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// first `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `LayoutVerified`, and returns the remaining bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. If any
    /// of the length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_from_prefix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_prefix(bytes: B, count: usize) -> Option<(LayoutVerified<B, [T]>, B)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        if bytes.len() < expected_len {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(expected_len);
        Self::new_slice(prefix).map(move |l| (l, bytes))
    }

    /// Constructs a new `LayoutVerified` of a slice type from the suffix of a
    /// byte slice.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// last `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `LayoutVerified`, and returns the preceding bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. If any
    /// of the length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_from_suffix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_suffix(bytes: B, count: usize) -> Option<(B, LayoutVerified<B, [T]>)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        if bytes.len() < expected_len {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(expected_len);
        Self::new_slice(suffix).map(move |l| (bytes, l))
    }
}

fn map_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<LayoutVerified<B, T>>,
) -> Option<LayoutVerified<B, T>> {
    match opt {
        Some(mut lv) => {
            for b in lv.0.iter_mut() {
                *b = 0;
            }
            Some(lv)
        }
        None => None,
    }
}

fn map_prefix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<(LayoutVerified<B, T>, B)>,
) -> Option<(LayoutVerified<B, T>, B)> {
    match opt {
        Some((mut lv, rest)) => {
            for b in lv.0.iter_mut() {
                *b = 0;
            }
            Some((lv, rest))
        }
        None => None,
    }
}

fn map_suffix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<(B, LayoutVerified<B, T>)>,
) -> Option<(B, LayoutVerified<B, T>)> {
    map_prefix_tuple_zeroed(opt.map(|(a, b)| (b, a))).map(|(a, b)| (b, a))
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
{
    /// Constructs a new `LayoutVerified` after zeroing the bytes.
    ///
    /// `new_zeroed` verifies that `bytes.len() == size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`, and constructs a new
    /// `LayoutVerified`. If either of these checks fail, it returns `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> {
        map_zeroed(Self::new(bytes))
    }

    /// Constructs a new `LayoutVerified` from the prefix of a byte slice,
    /// zeroing the prefix.
    ///
    /// `new_from_prefix_zeroed` verifies that `bytes.len() >= size_of::<T>()`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and
    /// returns the remaining bytes to the caller. If either the length or
    /// alignment checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_from_prefix(bytes))
    }

    /// Constructs a new `LayoutVerified` from the suffix of a byte slice,
    /// zeroing the suffix.
    ///
    /// `new_from_suffix_zeroed` verifies that `bytes.len() >= size_of::<T>()`
    /// and that the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If either the length or alignment checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_from_suffix(bytes))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
{
    /// Constructs a new `LayoutVerified` of a slice type after zeroing the
    /// bytes.
    ///
    /// `new_slice_zeroed` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and
    /// constructs a new `LayoutVerified`. If either of these checks fail, it
    /// returns `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_zeroed(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        map_zeroed(Self::new_slice(bytes))
    }

    /// Constructs a new `LayoutVerified` of a slice type from the prefix of a
    /// byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// first `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `LayoutVerified`, and returns the remaining bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. If any
    /// of the length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_from_prefix_zeroed` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_prefix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(LayoutVerified<B, [T]>, B)> {
        map_prefix_tuple_zeroed(Self::new_slice_from_prefix(bytes, count))
    }

    /// Constructs a new `LayoutVerified` of a slice type from the prefix of a
    /// byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// last `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `LayoutVerified`, and returns the preceding bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. If any
    /// of the length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the consumed suffix will be initialized to
    /// zero. This can be useful when re-using buffers to ensure that sensitive
    /// data previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_from_suffix_zeroed` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_suffix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(B, LayoutVerified<B, [T]>)> {
        map_suffix_tuple_zeroed(Self::new_slice_from_suffix(bytes, count))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Constructs a new `LayoutVerified` for a type with no alignment
    /// requirement.
    ///
    /// `new_unaligned` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `LayoutVerified`. If the check fails, it returns
    /// `None`.
    #[inline]
    pub fn new_unaligned(bytes: B) -> Option<LayoutVerified<B, T>> {
        if bytes.len() != mem::size_of::<T>() {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Constructs a new `LayoutVerified` from the prefix of a byte slice for a
    /// type with no alignment requirement.
    ///
    /// `new_unaligned_from_prefix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. If the length check fails, it returns `None`.
    #[inline]
    pub fn new_unaligned_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((LayoutVerified(bytes, PhantomData), suffix))
    }

    /// Constructs a new `LayoutVerified` from the suffix of a byte slice for a
    /// type with no alignment requirement.
    ///
    /// `new_unaligned_from_suffix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If the length check fails, it returns `None`.
    #[inline]
    pub fn new_unaligned_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        let bytes_len = bytes.len();
        if bytes_len < mem::size_of::<T>() {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(bytes_len - mem::size_of::<T>());
        Some((prefix, LayoutVerified(bytes, PhantomData)))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement.
    ///
    /// `new_slice_unaligned` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and constructs a new `LayoutVerified`. If the check
    /// fails, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        assert_ne!(mem::size_of::<T>(), 0);
        if bytes.len() % mem::size_of::<T>() != 0 {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement from the prefix of a byte slice.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the first `size_of::<T>() * count` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. It also ensures that `sizeof::<T>() * count` does not
    /// overflow a `usize`. If either the length, or overflow checks fail, it
    /// returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_prefix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned_from_prefix(
        bytes: B,
        count: usize,
    ) -> Option<(LayoutVerified<B, [T]>, B)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        if bytes.len() < expected_len {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(expected_len);
        Self::new_slice_unaligned(prefix).map(move |l| (l, bytes))
    }

    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement from the suffix of a byte slice.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes`
    /// to construct a `LayoutVerified`, and returns the remaining bytes to the
    /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a
    /// `usize`. If either the length, or overflow checks fail, it returns
    /// `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_suffix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned_from_suffix(
        bytes: B,
        count: usize,
    ) -> Option<(B, LayoutVerified<B, [T]>)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        if bytes.len() < expected_len {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(expected_len);
        Self::new_slice_unaligned(suffix).map(move |l| (bytes, l))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Constructs a new `LayoutVerified` for a type with no alignment
    /// requirement, zeroing the bytes.
    ///
    /// `new_unaligned_zeroed` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `LayoutVerified`. If the check fails, it returns
    /// `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> {
        map_zeroed(Self::new_unaligned(bytes))
    }

    /// Constructs a new `LayoutVerified` from the prefix of a byte slice for a
    /// type with no alignment requirement, zeroing the prefix.
    ///
    /// `new_unaligned_from_prefix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_unaligned_from_prefix(bytes))
    }

    /// Constructs a new `LayoutVerified` from the suffix of a byte slice for a
    /// type with no alignment requirement, zeroing the suffix.
    ///
    /// `new_unaligned_from_suffix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_unaligned_from_suffix(bytes))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Constructs a new `LayoutVerified` for a slice type with no alignment
    /// requirement, zeroing the bytes.
    ///
    /// `new_slice_unaligned_zeroed` verifies that `bytes.len()` is a multiple
    /// of `size_of::<T>()` and constructs a new `LayoutVerified`. If the check
    /// fails, it returns `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        map_zeroed(Self::new_slice_unaligned(bytes))
    }

    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement from the prefix of a byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the first `size_of::<T>() * count` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. It also ensures that `sizeof::<T>() * count` does not
    /// overflow a `usize`. If either the length, or overflow checks fail, it
    /// returns `None`.
    ///
    /// If the checks succeed, then the prefix will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_prefix_zeroed` panics if `T` is a zero-sized
    /// type.
    #[inline]
    pub fn new_slice_unaligned_from_prefix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(LayoutVerified<B, [T]>, B)> {
        map_prefix_tuple_zeroed(Self::new_slice_unaligned_from_prefix(bytes, count))
    }

    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement from the suffix of a byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes`
    /// to construct a `LayoutVerified`, and returns the remaining bytes to the
    /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a
    /// `usize`. If either the length, or overflow checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then the suffix will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_suffix_zeroed` panics if `T` is a zero-sized
    /// type.
    #[inline]
    pub fn new_slice_unaligned_from_suffix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(B, LayoutVerified<B, [T]>)> {
        map_suffix_tuple_zeroed(Self::new_slice_unaligned_from_suffix(bytes, count))
    }
}

impl<'a, B, T> LayoutVerified<B, T>
where
    B: 'a + ByteSlice,
    T: FromBytes,
{
    /// Converts this `LayoutVerified` into a reference.
    ///
    /// `into_ref` consumes the `LayoutVerified`, and returns a reference to
    /// `T`.
    pub fn into_ref(self) -> &'a T {
        // NOTE: This is safe because `B` is guaranteed to live for the lifetime
        // `'a`, meaning that a) the returned reference cannot outlive the `B`
        // from which `self` was constructed and, b) no mutable methods on that
        // `B` can be called during the lifetime of the returned reference. See
        // the documentation on `deref_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, T>
where
    B: 'a + ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Converts this `LayoutVerified` into a mutable reference.
    ///
    /// `into_mut` consumes the `LayoutVerified`, and returns a mutable
    /// reference to `T`.
    pub fn into_mut(mut self) -> &'a mut T {
        // NOTE: This is safe because `B` is guaranteed to live for the lifetime
        // `'a`, meaning that a) the returned reference cannot outlive the `B`
        // from which `self` was constructed and, b) no other methods - mutable
        // or immutable - on that `B` can be called during the lifetime of the
        // returned reference. See the documentation on `deref_mut_helper` for
        // what invariants we are required to uphold.
        unsafe { self.deref_mut_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, [T]>
where
    B: 'a + ByteSlice,
    T: FromBytes,
{
    /// Converts this `LayoutVerified` into a slice reference.
    ///
    /// `into_slice` consumes the `LayoutVerified`, and returns a reference to
    /// `[T]`.
    pub fn into_slice(self) -> &'a [T] {
        // NOTE: This is safe because `B` is guaranteed to live for the lifetime
        // `'a`, meaning that a) the returned reference cannot outlive the `B`
        // from which `self` was constructed and, b) no mutable methods on that
        // `B` can be called during the lifetime of the returned reference. See
        // the documentation on `deref_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_slice_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, [T]>
where
    B: 'a + ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Converts this `LayoutVerified` into a mutable slice reference.
    ///
    /// `into_mut_slice` consumes the `LayoutVerified`, and returns a mutable
    /// reference to `[T]`.
    pub fn into_mut_slice(mut self) -> &'a mut [T] {
        // NOTE: This is safe because `B` is guaranteed to live for the lifetime
        // `'a`, meaning that a) the returned reference cannot outlive the `B`
        // from which `self` was constructed and, b) no other methods - mutable
        // or immutable - on that `B` can be called during the lifetime of the
        // returned reference. See the documentation on `deref_mut_slice_helper`
        // for what invariants we are required to uphold.
        unsafe { self.deref_mut_slice_helper() }
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Creates an immutable reference to `T` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// The type bounds on this method guarantee that it is safe to create an
    /// immutable reference to `T` from `self`. However, since the lifetime `'a`
    /// is not required to be shorter than the lifetime of the reference to
    /// `self`, the caller must guarantee that the lifetime `'a` is valid for
    /// this reference. In particular, the referent must exist for all of `'a`,
    /// and no mutable references to the same memory may be constructed during
    /// `'a`.
    unsafe fn deref_helper<'a>(&self) -> &'a T {
        &*(self.0.as_ptr() as *const T)
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Creates a mutable reference to `T` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// The type bounds on this method guarantee that it is safe to create a
    /// mutable reference to `T` from `self`. However, since the lifetime `'a`
    /// is not required to be shorter than the lifetime of the reference to
    /// `self`, the caller must guarantee that the lifetime `'a` is valid for
    /// this reference. In particular, the referent must exist for all of `'a`,
    /// and no other references - mutable or immutable - to the same memory may
    /// be constructed during `'a`.
    unsafe fn deref_mut_helper<'a>(&mut self) -> &'a mut T {
        &mut *(self.0.as_mut_ptr() as *mut T)
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Creates an immutable reference to `[T]` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// `deref_slice_helper` has the same safety requirements as `deref_helper`.
    unsafe fn deref_slice_helper<'a>(&self) -> &'a [T] {
        let len = self.0.len();
        let elem_size = mem::size_of::<T>();
        debug_assert_ne!(elem_size, 0);
        debug_assert_eq!(len % elem_size, 0);
        let elems = len / elem_size;
        slice::from_raw_parts(self.0.as_ptr() as *const T, elems)
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Creates a mutable reference to `[T]` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// `deref_mut_slice_helper` has the same safety requirements as
    /// `deref_mut_helper`.
    unsafe fn deref_mut_slice_helper<'a>(&mut self) -> &'a mut [T] {
        let len = self.0.len();
        let elem_size = mem::size_of::<T>();
        debug_assert_ne!(elem_size, 0);
        debug_assert_eq!(len % elem_size, 0);
        let elems = len / elem_size;
        slice::from_raw_parts_mut(self.0.as_mut_ptr() as *mut T, elems)
    }
}

fn aligned_to(bytes: &[u8], align: usize) -> bool {
    (bytes as *const _ as *const () as usize) % align == 0
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: ?Sized,
{
    /// Gets the underlying bytes.
    #[inline]
    pub fn bytes(&self) -> &[u8] {
        &self.0
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: ?Sized,
{
    /// Gets the underlying bytes mutably.
    #[inline]
    pub fn bytes_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Reads a copy of `T`.
    #[inline]
    pub fn read(&self) -> T {
        // SAFETY: Because of the invariants on `LayoutVerified`, we know that
        // `self.0` is at least `size_of::<T>()` bytes long, and that it is at
        // least as aligned as `align_of::<T>()`. Because `T: FromBytes`, it is
        // sound to interpret these bytes as a `T`.
        unsafe { ptr::read(self.0.as_ptr() as *const T) }
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: AsBytes,
{
    /// Writes the bytes of `t` and then forgets `t`.
    #[inline]
    pub fn write(&mut self, t: T) {
        // SAFETY: Because of the invariants on `LayoutVerified`, we know that
        // `self.0` is at least `size_of::<T>()` bytes long, and that it is at
        // least as aligned as `align_of::<T>()`. Writing `t` to the buffer will
        // allow all of the bytes of `t` to be accessed as a `[u8]`, but because
        // `T: AsBytes`, we know this is sound.
        unsafe { ptr::write(self.0.as_mut_ptr() as *mut T, t) }
    }
}

impl<B, T> Deref for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        // SAFETY: This is safe because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no mutable methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_helper` for what invariants we are required
        // to uphold.
        unsafe { self.deref_helper() }
    }
}

impl<B, T> DerefMut for LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        // SAFETY: This is safe because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no other methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_mut_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_mut_helper() }
    }
}

impl<B, T> Deref for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = [T];
    #[inline]
    fn deref(&self) -> &[T] {
        // SAFETY: This is safe because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no mutable methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_slice_helper() }
    }
}

impl<B, T> DerefMut for LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut [T] {
        // SAFETY: This is safe because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no other methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_mut_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_mut_slice_helper() }
    }
}

impl<T, B> Display for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &T = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Display for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
    [T]: Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &[T] = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Debug for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &T = self;
        fmt.debug_tuple("LayoutVerified").field(&inner).finish()
    }
}

impl<T, B> Debug for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &[T] = self;
        fmt.debug_tuple("LayoutVerified").field(&inner).finish()
    }
}

impl<T, B> Eq for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Eq,
{
}

impl<T, B> Eq for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Eq,
{
}

impl<T, B> PartialEq for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<T, B> PartialEq for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<T, B> Ord for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        let inner: &T = self;
        let other_inner: &T = other;
        inner.cmp(other_inner)
    }
}

impl<T, B> Ord for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        let inner: &[T] = self;
        let other_inner: &[T] = other;
        inner.cmp(other_inner)
    }
}

impl<T, B> PartialOrd for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        let inner: &T = self;
        let other_inner: &T = other;
        inner.partial_cmp(other_inner)
    }
}

impl<T, B> PartialOrd for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        let inner: &[T] = self;
        let other_inner: &[T] = other;
        inner.partial_cmp(other_inner)
    }
}

mod sealed {
    use core::cell::{Ref, RefMut};

    pub trait Sealed {}
    impl<'a> Sealed for &'a [u8] {}
    impl<'a> Sealed for &'a mut [u8] {}
    impl<'a> Sealed for Ref<'a, [u8]> {}
    impl<'a> Sealed for RefMut<'a, [u8]> {}
}

// ByteSlice and ByteSliceMut abstract over [u8] references (&[u8], &mut [u8],
// Ref<[u8]>, RefMut<[u8]>, etc). We rely on various behaviors of these
// references such as that a given reference will never changes its length
// between calls to deref() or deref_mut(), and that split_at() works as
// expected. If ByteSlice or ByteSliceMut were not sealed, consumers could
// implement them in a way that violated these behaviors, and would break our
// unsafe code. Thus, we seal them and implement it only for known-good
// reference types. For the same reason, they're unsafe traits.

/// A mutable or immutable reference to a byte slice.
///
/// `ByteSlice` abstracts over the mutability of a byte slice reference, and is
/// implemented for various special reference types such as `Ref<[u8]>` and
/// `RefMut<[u8]>`.
///
/// Note that, while it would be technically possible, `ByteSlice` is not
/// implemented for [`Vec<u8>`], as the only way to implement the [`split_at`]
/// method would involve reallocation, and `split_at` must be a very cheap
/// operation in order for the utilities in this crate to perform as designed.
///
/// [`Vec<u8>`]: std::vec::Vec
/// [`split_at`]: crate::ByteSlice::split_at
pub unsafe trait ByteSlice: Deref<Target = [u8]> + Sized + self::sealed::Sealed {
    /// Gets a raw pointer to the first byte in the slice.
    fn as_ptr(&self) -> *const u8;

    /// Splits the slice at the midpoint.
    ///
    /// `x.split_at(mid)` returns `x[..mid]` and `x[mid..]`.
    ///
    /// # Panics
    ///
    /// `x.split_at(mid)` panics if `mid > x.len()`.
    fn split_at(self, mid: usize) -> (Self, Self);
}

/// A mutable reference to a byte slice.
///
/// `ByteSliceMut` abstracts over various ways of storing a mutable reference to
/// a byte slice, and is implemented for various special reference types such as
/// `RefMut<[u8]>`.
pub unsafe trait ByteSliceMut: ByteSlice + DerefMut {
    /// Gets a mutable raw pointer to the first byte in the slice.
    fn as_mut_ptr(&mut self) -> *mut u8;
}

unsafe impl<'a> ByteSlice for &'a [u8] {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at(self, mid)
    }
}
unsafe impl<'a> ByteSlice for &'a mut [u8] {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at_mut(self, mid)
    }
}
unsafe impl<'a> ByteSlice for Ref<'a, [u8]> {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        Ref::map_split(self, |slice| <[u8]>::split_at(slice, mid))
    }
}
unsafe impl<'a> ByteSlice for RefMut<'a, [u8]> {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        RefMut::map_split(self, |slice| <[u8]>::split_at_mut(slice, mid))
    }
}

unsafe impl<'a> ByteSliceMut for &'a mut [u8] {
    fn as_mut_ptr(&mut self) -> *mut u8 {
        <[u8]>::as_mut_ptr(self)
    }
}
unsafe impl<'a> ByteSliceMut for RefMut<'a, [u8]> {
    fn as_mut_ptr(&mut self) -> *mut u8 {
        <[u8]>::as_mut_ptr(self)
    }
}

#[cfg(any(test, feature = "alloc"))]
mod alloc_support {
    pub(crate) extern crate alloc;
    pub(crate) use super::*;
    pub(crate) use alloc::alloc::Layout;
    pub(crate) use alloc::boxed::Box;
    pub(crate) use alloc::vec::Vec;
    pub(crate) use core::mem::{align_of, size_of};
    pub(crate) use core::ptr::NonNull;

    /// Extends a `Vec<T>` by pushing `additional` new items onto the end of the
    /// vector. The new items are initialized with zeroes.
    ///
    /// # Panics
    ///
    /// Panics if `Vec::reserve(additional)` fails to reserve enough memory.
    pub fn extend_vec_zeroed<T: FromBytes>(v: &mut Vec<T>, additional: usize) {
        insert_vec_zeroed(v, v.len(), additional);
    }

    /// Inserts `additional` new items into `Vec<T>` at `position`.
    /// The new items are initialized with zeroes.
    ///
    /// # Panics
    ///
    /// * Panics if `position > v.len()`.
    /// * Panics if `Vec::reserve(additional)` fails to reserve enough memory.
    pub fn insert_vec_zeroed<T: FromBytes>(v: &mut Vec<T>, position: usize, additional: usize) {
        assert!(position <= v.len());
        v.reserve(additional);
        // The reserve() call guarantees that these cannot overflow:
        // * `ptr.add(position)`
        // * `position + additional`
        // * `v.len() + additional`
        //
        // `v.len() - position` cannot overflow because we asserted that
        // position <= v.len().
        unsafe {
            // This is a potentially overlapping copy.
            let ptr = v.as_mut_ptr();
            ptr.add(position).copy_to(ptr.add(position + additional), v.len() - position);
            ptr.add(position).write_bytes(0, additional);
            v.set_len(v.len() + additional);
        }
    }
}

#[cfg(any(test, feature = "alloc"))]
#[doc(inline)]
pub use alloc_support::*;

#[cfg(test)]
mod tests {
    #![allow(clippy::unreadable_literal)]

    use core::ops::Deref;

    use super::*;

    // B should be [u8; N]. T will require that the entire structure is aligned
    // to the alignment of T.
    #[derive(Default)]
    struct AlignedBuffer<T, B> {
        buf: B,
        _t: T,
    }

    impl<T, B: Default> AlignedBuffer<T, B> {
        fn clear_buf(&mut self) {
            self.buf = B::default();
        }
    }

    // convert a u64 to bytes using this platform's endianness
    fn u64_to_bytes(u: u64) -> [u8; 8] {
        unsafe { ptr::read(&u as *const u64 as *const [u8; 8]) }
    }

    #[test]
    fn test_read_write() {
        const VAL: u64 = 0x12345678;
        #[cfg(target_endian = "big")]
        const VAL_BYTES: [u8; 8] = VAL.to_be_bytes();
        #[cfg(target_endian = "little")]
        const VAL_BYTES: [u8; 8] = VAL.to_le_bytes();

        // Test FromBytes::{read_from, read_from_prefix, read_from_suffix}

        assert_eq!(u64::read_from(&VAL_BYTES[..]), Some(VAL));
        // The first 8 bytes are from `VAL_BYTES` and the second 8 bytes are all
        // zeroes.
        let bytes_with_prefix: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]);
        assert_eq!(u64::read_from_prefix(&bytes_with_prefix[..]), Some(VAL));
        assert_eq!(u64::read_from_suffix(&bytes_with_prefix[..]), Some(0));
        // The first 8 bytes are all zeroes and the second 8 bytes are from
        // `VAL_BYTES`
        let bytes_with_suffix: [u8; 16] = transmute!([[0; 8], VAL_BYTES]);
        assert_eq!(u64::read_from_prefix(&bytes_with_suffix[..]), Some(0));
        assert_eq!(u64::read_from_suffix(&bytes_with_suffix[..]), Some(VAL));

        // Test AsBytes::{write_to, write_to_prefix, write_to_suffix}

        let mut bytes = [0u8; 8];
        assert_eq!(VAL.write_to(&mut bytes[..]), Some(()));
        assert_eq!(bytes, VAL_BYTES);
        let mut bytes = [0u8; 16];
        assert_eq!(VAL.write_to_prefix(&mut bytes[..]), Some(()));
        let want: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]);
        assert_eq!(bytes, want);
        let mut bytes = [0u8; 16];
        assert_eq!(VAL.write_to_suffix(&mut bytes[..]), Some(()));
        let want: [u8; 16] = transmute!([[0; 8], VAL_BYTES]);
        assert_eq!(bytes, want);
    }

    #[test]
    fn test_transmute() {
        // Test that memory is transmuted as expected.
        let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7];
        let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]];
        let x: [[u8; 2]; 4] = transmute!(array_of_u8s);
        assert_eq!(x, array_of_arrays);
        let x: [u8; 8] = transmute!(array_of_arrays);
        assert_eq!(x, array_of_u8s);

        // Test that the source expression's value is forgotten rather than
        // dropped.
        #[derive(AsBytes)]
        #[repr(transparent)]
        struct PanicOnDrop(());
        impl Drop for PanicOnDrop {
            fn drop(&mut self) {
                panic!("PanicOnDrop::drop");
            }
        }
        let _: () = transmute!(PanicOnDrop(()));
    }

    #[test]
    fn test_address() {
        // test that the Deref and DerefMut implementations return a reference
        // which points to the right region of memory

        let buf = [0];
        let lv = LayoutVerified::<_, u8>::new(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr = lv.deref() as *const u8;
        assert_eq!(buf_ptr, deref_ptr);

        let buf = [0];
        let lv = LayoutVerified::<_, [u8]>::new_slice(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr = lv.deref().as_ptr();
        assert_eq!(buf_ptr, deref_ptr);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations, that reads via `deref` and
    // `read` behave the same, and that writes via `deref_mut` and `write`
    // behave the same
    fn test_new_helper<'a>(mut lv: LayoutVerified<&'a mut [u8], u64>) {
        // assert that the value starts at 0
        assert_eq!(*lv, 0);
        assert_eq!(lv.read(), 0);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: u64 = 0xFF00FF00FF00FF00;
        *lv = VAL1;
        assert_eq!(lv.bytes(), &u64_to_bytes(VAL1));
        *lv = 0;
        lv.write(VAL1);
        assert_eq!(lv.bytes(), &u64_to_bytes(VAL1));

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: u64 = !VAL1; // different from VAL1
        lv.bytes_mut().copy_from_slice(&u64_to_bytes(VAL2)[..]);
        assert_eq!(*lv, VAL2);
        assert_eq!(lv.read(), VAL2);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations; pass a value with
    // `typed_len` `u64`s backed by an array of `typed_len * 8` bytes.
    fn test_new_helper_slice<'a>(mut lv: LayoutVerified<&'a mut [u8], [u64]>, typed_len: usize) {
        // assert that the value starts out zeroed
        assert_eq!(&*lv, vec![0; typed_len].as_slice());

        // check the backing storage is the exact same slice
        let untyped_len = typed_len * 8;
        assert_eq!(lv.bytes().len(), untyped_len);
        assert_eq!(lv.bytes().as_ptr(), lv.as_ptr() as *const u8);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: u64 = 0xFF00FF00FF00FF00;
        for typed in &mut *lv {
            *typed = VAL1;
        }
        assert_eq!(lv.bytes(), VAL1.to_ne_bytes().repeat(typed_len).as_slice());

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: u64 = !VAL1; // different from VAL1
        lv.bytes_mut().copy_from_slice(&VAL2.to_ne_bytes().repeat(typed_len));
        assert!(lv.iter().copied().all(|x| x == VAL2));
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations, that reads via `deref` and
    // `read` behave the same, and that writes via `deref_mut` and `write`
    // behave the same
    fn test_new_helper_unaligned<'a>(mut lv: LayoutVerified<&'a mut [u8], [u8; 8]>) {
        // assert that the value starts at 0
        assert_eq!(*lv, [0; 8]);
        assert_eq!(lv.read(), [0; 8]);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: [u8; 8] = [0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00];
        *lv = VAL1;
        assert_eq!(lv.bytes(), &VAL1);
        *lv = [0; 8];
        lv.write(VAL1);
        assert_eq!(lv.bytes(), &VAL1);

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: [u8; 8] = [0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF]; // different from VAL1
        lv.bytes_mut().copy_from_slice(&VAL2[..]);
        assert_eq!(*lv, VAL2);
        assert_eq!(lv.read(), VAL2);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations; pass a value with
    // `len` `u8`s backed by an array of `len` bytes.
    fn test_new_helper_slice_unaligned<'a>(mut lv: LayoutVerified<&'a mut [u8], [u8]>, len: usize) {
        // assert that the value starts out zeroed
        assert_eq!(&*lv, vec![0u8; len].as_slice());

        // check the backing storage is the exact same slice
        assert_eq!(lv.bytes().len(), len);
        assert_eq!(lv.bytes().as_ptr(), lv.as_ptr());

        // assert that values written to the typed value are reflected in the
        // byte slice
        let mut expected_bytes = [0xFF, 0x00].iter().copied().cycle().take(len).collect::<Vec<_>>();
        lv.copy_from_slice(&expected_bytes);
        assert_eq!(lv.bytes(), expected_bytes.as_slice());

        // assert that values written to the byte slice are reflected in the
        // typed value
        for byte in &mut expected_bytes {
            *byte = !*byte; // different from expected_len
        }
        lv.bytes_mut().copy_from_slice(&expected_bytes);
        assert_eq!(&*lv, expected_bytes.as_slice());
    }

    #[test]
    fn test_new_aligned_sized() {
        // Test that a properly-aligned, properly-sized buffer works for new,
        // new_from_preifx, and new_from_suffix, and that new_from_prefix and
        // new_from_suffix return empty slices. Test that a properly-aligned
        // buffer whose length is a multiple of the element size works for
        // new_slice. Test that xxx_zeroed behaves the same, and zeroes the
        // memory.

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 8]>::default();
        // buf.buf should be aligned to 8, so this should always succeed
        test_new_helper(LayoutVerified::<_, u64>::new(&mut buf.buf[..]).unwrap());
        buf.buf = [0xFFu8; 8];
        test_new_helper(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).unwrap());
        {
            // in a block so that lv and suffix don't live too long
            buf.clear_buf();
            let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix(&mut buf.buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.clear_buf();
            let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix(&mut buf.buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(lv);
        }

        // a buffer with alignment 8 and length 16
        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        // buf.buf should be aligned to 8 and have a length which is a multiple
        // of size_of::<u64>(), so this should always succeed
        test_new_helper_slice(LayoutVerified::<_, [u64]>::new_slice(&mut buf.buf[..]).unwrap(), 2);
        buf.buf = [0xFFu8; 16];
        test_new_helper_slice(
            LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[..]).unwrap(),
            2,
        );

        {
            buf.clear_buf();
            let (lv, suffix) =
                LayoutVerified::<_, [u64]>::new_slice_from_prefix(&mut buf.buf[..], 1).unwrap();
            assert_eq!(suffix, [0; 8]);
            test_new_helper_slice(lv, 1);
        }
        {
            buf.buf = [0xFFu8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [u64]>::new_slice_from_prefix_zeroed(&mut buf.buf[..], 1)
                    .unwrap();
            assert_eq!(suffix, [0xFF; 8]);
            test_new_helper_slice(lv, 1);
        }
        {
            buf.clear_buf();
            let (prefix, lv) =
                LayoutVerified::<_, [u64]>::new_slice_from_suffix(&mut buf.buf[..], 1).unwrap();
            assert_eq!(prefix, [0; 8]);
            test_new_helper_slice(lv, 1);
        }
        {
            buf.buf = [0xFFu8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u64]>::new_slice_from_suffix_zeroed(&mut buf.buf[..], 1)
                    .unwrap();
            assert_eq!(prefix, [0xFF; 8]);
            test_new_helper_slice(lv, 1);
        }
    }

    #[test]
    fn test_new_unaligned_sized() {
        // Test that an unaligned, properly-sized buffer works for
        // new_unaligned, new_unaligned_from_prefix, and
        // new_unaligned_from_suffix, and that new_unaligned_from_prefix
        // new_unaligned_from_suffix return empty slices. Test that an unaligned
        // buffer whose length is a multiple of the element size works for
        // new_slice. Test that xxx_zeroed behaves the same, and zeroes the
        // memory.

        let mut buf = [0u8; 8];
        test_new_helper_unaligned(
            LayoutVerified::<_, [u8; 8]>::new_unaligned(&mut buf[..]).unwrap(),
        );
        buf = [0xFFu8; 8];
        test_new_helper_unaligned(
            LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf[..]).unwrap(),
        );
        {
            // in a block so that lv and suffix don't live too long
            buf = [0u8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..])
                    .unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0u8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..])
                    .unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(lv);
        }

        let mut buf = [0u8; 16];
        // buf.buf should be aligned to 8 and have a length which is a multiple
        // of size_of::<u64>(), so this should always succeed
        test_new_helper_slice_unaligned(
            LayoutVerified::<_, [u8]>::new_slice_unaligned(&mut buf[..]).unwrap(),
            16,
        );
        buf = [0xFFu8; 16];
        test_new_helper_slice_unaligned(
            LayoutVerified::<_, [u8]>::new_slice_unaligned_zeroed(&mut buf[..]).unwrap(),
            16,
        );

        {
            buf = [0u8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [u8]>::new_slice_unaligned_from_prefix(&mut buf[..], 8)
                    .unwrap();
            assert_eq!(suffix, [0; 8]);
            test_new_helper_slice_unaligned(lv, 8);
        }
        {
            buf = [0xFFu8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [u8]>::new_slice_unaligned_from_prefix_zeroed(&mut buf[..], 8)
                    .unwrap();
            assert_eq!(suffix, [0xFF; 8]);
            test_new_helper_slice_unaligned(lv, 8);
        }
        {
            buf = [0u8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8]>::new_slice_unaligned_from_suffix(&mut buf[..], 8)
                    .unwrap();
            assert_eq!(prefix, [0; 8]);
            test_new_helper_slice_unaligned(lv, 8);
        }
        {
            buf = [0xFFu8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8]>::new_slice_unaligned_from_suffix_zeroed(&mut buf[..], 8)
                    .unwrap();
            assert_eq!(prefix, [0xFF; 8]);
            test_new_helper_slice_unaligned(lv, 8);
        }
    }

    #[test]
    fn test_new_oversized() {
        // Test that a properly-aligned, overly-sized buffer works for
        // new_from_prefix and new_from_suffix, and that they return the
        // remainder and prefix of the slice respectively. Test that xxx_zeroed
        // behaves the same, and zeroes the memory.

        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        {
            // in a block so that lv and suffix don't live too long
            // buf.buf should be aligned to 8, so this should always succeed
            let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix(&mut buf.buf[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 16];
            // buf.buf should be aligned to 8, so this should always succeed
            let (lv, suffix) =
                LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).unwrap();
            // assert that the suffix wasn't zeroed
            assert_eq!(suffix, &[0xFFu8; 8]);
            test_new_helper(lv);
        }
        {
            buf.clear_buf();
            // buf.buf should be aligned to 8, so this should always succeed
            let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix(&mut buf.buf[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 16];
            // buf.buf should be aligned to 8, so this should always succeed
            let (prefix, lv) =
                LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).unwrap();
            // assert that the prefix wasn't zeroed
            assert_eq!(prefix, &[0xFFu8; 8]);
            test_new_helper(lv);
        }
    }

    #[test]
    fn test_new_unaligned_oversized() {
        // Test than an unaligned, overly-sized buffer works for
        // new_unaligned_from_prefix and new_unaligned_from_suffix, and that
        // they return the remainder and prefix of the slice respectively. Test
        // that xxx_zeroed behaves the same, and zeroes the memory.

        let mut buf = [0u8; 16];
        {
            // in a block so that lv and suffix don't live too long
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..])
                    .unwrap();
            // assert that the suffix wasn't zeroed
            assert_eq!(suffix, &[0xFF; 8]);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0u8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..])
                    .unwrap();
            // assert that the prefix wasn't zeroed
            assert_eq!(prefix, &[0xFF; 8]);
            test_new_helper_unaligned(lv);
        }
    }

    #[test]
    #[allow(clippy::cognitive_complexity)]
    fn test_new_error() {
        // fail because the buffer is too large

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        // buf.buf should be aligned to 8, so only the length check should fail
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.buf[..]).is_none());

        // fail because the buffer is too small

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 4]>::default();
        // buf.buf should be aligned to 8, so only the length check should fail
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf.buf[..])
            .is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf.buf[..])
            .is_none());

        // fail because the length is not a multiple of the element size

        let mut buf = AlignedBuffer::<u64, [u8; 12]>::default();
        // buf.buf has length 12, but element size is 8
        assert!(LayoutVerified::<_, [u64]>::new_slice(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned(&buf.buf[..]).is_none());
        assert!(
            LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_zeroed(&mut buf.buf[..]).is_none()
        );

        // fail beacuse the buffer is too short.
        let mut buf = AlignedBuffer::<u64, [u8; 12]>::default();
        // buf.buf has length 12, but the element size is 8 (and we're expecting two of them).
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_prefix(&buf.buf[..], 2).is_none());
        assert!(
            LayoutVerified::<_, [u64]>::new_slice_from_prefix_zeroed(&mut buf.buf[..], 2).is_none()
        );
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_suffix(&buf.buf[..], 2).is_none());
        assert!(
            LayoutVerified::<_, [u64]>::new_slice_from_suffix_zeroed(&mut buf.buf[..], 2).is_none()
        );
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(&buf.buf[..], 2)
            .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed(
            &mut buf.buf[..],
            2
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(&buf.buf[..], 2)
            .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed(
            &mut buf.buf[..],
            2
        )
        .is_none());

        // fail because the alignment is insufficient

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 12]>::default();
        // slicing from 4, we get a buffer with size 8 (so the length check
        // should succeed) but an alignment of only 4, which is insufficient
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix(&buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice(&buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_prefix(&buf.buf[4..], 1).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_prefix_zeroed(&mut buf.buf[4..], 1)
            .is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_suffix(&buf.buf[4..], 1).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_suffix_zeroed(&mut buf.buf[4..], 1)
            .is_none());
        // slicing from 4 should be unnecessary because new_from_suffix[_zeroed]
        // use the suffix of the slice
        assert!(LayoutVerified::<_, u64>::new_from_suffix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).is_none());

        // fail due to arithmetic overflow

        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        let unreasonable_len = std::usize::MAX / mem::size_of::<u64>() + 1;
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_prefix(&buf.buf[..], unreasonable_len)
            .is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_prefix_zeroed(
            &mut buf.buf[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_suffix(&buf.buf[..], unreasonable_len)
            .is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_from_suffix_zeroed(
            &mut buf.buf[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(
            &buf.buf[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed(
            &mut buf.buf[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(
            &buf.buf[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed(
            &mut buf.buf[..],
            unreasonable_len
        )
        .is_none());
    }

    // Tests for ensuring that, if a ZST is passed into a slice-like function, we always
    // panic. Since these tests need to be separate per-function, and they tend to take
    // up a lot of space, we generate them using a macro in a submodule instead. The
    // submodule ensures that we can just re-use the name of the function under test for
    // the name of the test itself.
    mod test_zst_panics {
        macro_rules! zst_test {
            ($name:ident($($tt:tt)*)) => {
                #[test]
                #[should_panic = "assertion failed"]
                fn $name() {
                    let mut buffer = [0u8];
                    let lv = $crate::LayoutVerified::<_, [()]>::$name(&mut buffer[..], $($tt)*);
                    unreachable!("should have panicked, got {:?}", lv);
                }
            }
        }
        zst_test!(new_slice());
        zst_test!(new_slice_zeroed());
        zst_test!(new_slice_from_prefix(1));
        zst_test!(new_slice_from_prefix_zeroed(1));
        zst_test!(new_slice_from_suffix(1));
        zst_test!(new_slice_from_suffix_zeroed(1));
        zst_test!(new_slice_unaligned());
        zst_test!(new_slice_unaligned_zeroed());
        zst_test!(new_slice_unaligned_from_prefix(1));
        zst_test!(new_slice_unaligned_from_prefix_zeroed(1));
        zst_test!(new_slice_unaligned_from_suffix(1));
        zst_test!(new_slice_unaligned_from_suffix_zeroed(1));
    }

    #[test]
    fn test_as_bytes_methods() {
        #[derive(Debug, Eq, PartialEq, FromBytes, AsBytes)]
        #[repr(C)]
        struct Foo {
            a: u32,
            b: u32,
        }

        let mut foo = Foo { a: 1, b: 2 };
        // Test that we can access the underlying bytes, and that we get the
        // right bytes and the right number of bytes.
        assert_eq!(foo.as_bytes(), [1, 0, 0, 0, 2, 0, 0, 0]);
        // Test that changes to the underlying byte slices are reflected in the
        // original object.
        foo.as_bytes_mut()[0] = 3;
        assert_eq!(foo, Foo { a: 3, b: 2 });

        // Do the same tests for a slice, which ensures that this logic works
        // for unsized types as well.
        let foo = &mut [Foo { a: 1, b: 2 }, Foo { a: 3, b: 4 }];
        assert_eq!(foo.as_bytes(), [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0]);
        foo.as_bytes_mut()[8] = 5;
        assert_eq!(foo, &mut [Foo { a: 1, b: 2 }, Foo { a: 5, b: 4 }]);
    }

    #[test]
    fn test_array() {
        // This is a hack, as per above in `test_as_bytes_methods`.
        mod zerocopy {
            pub use crate::*;
        }
        #[derive(FromBytes, AsBytes)]
        #[repr(C)]
        struct Foo {
            a: [u16; 33],
        }

        let foo = Foo { a: [0xFFFF; 33] };
        let expected = [0xFFu8; 66];
        assert_eq!(foo.as_bytes(), &expected[..]);
    }

    #[test]
    fn test_display_debug() {
        let buf = AlignedBuffer::<u64, [u8; 8]>::default();
        let lv = LayoutVerified::<_, u64>::new(&buf.buf[..]).unwrap();
        assert_eq!(format!("{}", lv), "0");
        assert_eq!(format!("{:?}", lv), "LayoutVerified(0)");

        let buf = AlignedBuffer::<u64, [u8; 8]>::default();
        let lv = LayoutVerified::<_, [u64]>::new_slice(&buf.buf[..]).unwrap();
        assert_eq!(format!("{:?}", lv), "LayoutVerified([0])");
    }

    #[test]
    fn test_eq() {
        let buf = [0u8; 8];
        let lv1 = LayoutVerified::<_, u64>::new(&buf[..]).unwrap();
        let lv2 = LayoutVerified::<_, u64>::new(&buf[..]).unwrap();
        assert_eq!(lv1, lv2);
    }

    #[test]
    fn test_ne() {
        let buf1 = [0u8; 8];
        let lv1 = LayoutVerified::<_, u64>::new(&buf1[..]).unwrap();
        let buf2 = [1u8; 8];
        let lv2 = LayoutVerified::<_, u64>::new(&buf2[..]).unwrap();
        assert_ne!(lv1, lv2);
    }

    #[test]
    fn test_ord() {
        let buf1 = [0u8; 8];
        let lv1 = LayoutVerified::<_, u64>::new(&buf1[..]).unwrap();
        let buf2 = [1u8; 8];
        let lv2 = LayoutVerified::<_, u64>::new(&buf2[..]).unwrap();
        assert!(lv1 < lv2);
    }

    #[test]
    fn test_new_zeroed() {
        assert_eq!(u64::new_zeroed(), 0);
        assert_eq!(<()>::new_zeroed(), ());
    }

    #[test]
    fn test_new_box_zeroed() {
        assert_eq!(*u64::new_box_zeroed(), 0);
    }

    #[test]
    fn test_new_box_zeroed_array() {
        drop(<[u32; 0x1000]>::new_box_zeroed());
    }

    #[test]
    fn test_new_box_zeroed_zst() {
        assert_eq!(*<()>::new_box_zeroed(), ());
    }

    #[test]
    fn test_new_box_slice_zeroed() {
        let mut s: Box<[u64]> = u64::new_box_slice_zeroed(3);
        assert_eq!(s.len(), 3);
        assert_eq!(&*s, &[0, 0, 0]);
        s[1] = 3;
        assert_eq!(&*s, &[0, 3, 0]);
    }

    #[test]
    fn test_new_box_slice_zeroed_empty() {
        let s: Box<[u64]> = u64::new_box_slice_zeroed(0);
        assert_eq!(s.len(), 0);
    }

    #[test]
    fn test_new_box_slice_zeroed_zst() {
        let mut s: Box<[()]> = <()>::new_box_slice_zeroed(3);
        assert_eq!(s.len(), 3);
        assert!(s.get(10).is_none());
        assert_eq!(s[1], ());
        s[2] = ();
    }

    #[test]
    fn test_new_box_slice_zeroed_zst_empty() {
        let s: Box<[()]> = <()>::new_box_slice_zeroed(0);
        assert_eq!(s.len(), 0);
    }

    #[test]
    fn test_extend_vec_zeroed() {
        // test extending when there is an existing allocation
        let mut v: Vec<u64> = Vec::with_capacity(3);
        v.push(100);
        v.push(200);
        v.push(300);
        extend_vec_zeroed(&mut v, 3);
        assert_eq!(v.len(), 6);
        assert_eq!(&*v, &[100, 200, 300, 0, 0, 0]);
        drop(v);

        // test extending when there is no existing allocation
        let mut v: Vec<u64> = Vec::new();
        extend_vec_zeroed(&mut v, 3);
        assert_eq!(v.len(), 3);
        assert_eq!(&*v, &[0, 0, 0]);
        drop(v);
    }

    #[test]
    fn test_extend_vec_zeroed_zst() {
        // test extending when there is an existing (fake) allocation
        let mut v: Vec<()> = Vec::with_capacity(3);
        v.push(());
        v.push(());
        v.push(());
        extend_vec_zeroed(&mut v, 3);
        assert_eq!(v.len(), 6);
        assert_eq!(&*v, &[(), (), (), (), (), ()]);
        drop(v);

        // test extending when there is no existing (fake) allocation
        let mut v: Vec<()> = Vec::new();
        extend_vec_zeroed(&mut v, 3);
        assert_eq!(&*v, &[(), (), ()]);
        drop(v);
    }

    #[test]
    fn test_insert_vec_zeroed() {
        // insert at start (no existing allocation)
        let mut v: Vec<u64> = Vec::new();
        insert_vec_zeroed(&mut v, 0, 2);
        assert_eq!(v.len(), 2);
        assert_eq!(&*v, &[0, 0]);
        drop(v);

        // insert at start
        let mut v: Vec<u64> = Vec::with_capacity(3);
        v.push(100);
        v.push(200);
        v.push(300);
        insert_vec_zeroed(&mut v, 0, 2);
        assert_eq!(v.len(), 5);
        assert_eq!(&*v, &[0, 0, 100, 200, 300]);
        drop(v);

        // insert at middle
        let mut v: Vec<u64> = Vec::with_capacity(3);
        v.push(100);
        v.push(200);
        v.push(300);
        insert_vec_zeroed(&mut v, 1, 1);
        assert_eq!(v.len(), 4);
        assert_eq!(&*v, &[100, 0, 200, 300]);
        drop(v);

        // insert at end
        let mut v: Vec<u64> = Vec::with_capacity(3);
        v.push(100);
        v.push(200);
        v.push(300);
        insert_vec_zeroed(&mut v, 3, 1);
        assert_eq!(v.len(), 4);
        assert_eq!(&*v, &[100, 200, 300, 0]);
        drop(v);
    }

    #[test]
    fn test_insert_vec_zeroed_zst() {
        // insert at start (no existing fake allocation)
        let mut v: Vec<()> = Vec::new();
        insert_vec_zeroed(&mut v, 0, 2);
        assert_eq!(v.len(), 2);
        assert_eq!(&*v, &[(), ()]);
        drop(v);

        // insert at start
        let mut v: Vec<()> = Vec::with_capacity(3);
        v.push(());
        v.push(());
        v.push(());
        insert_vec_zeroed(&mut v, 0, 2);
        assert_eq!(v.len(), 5);
        assert_eq!(&*v, &[(), (), (), (), ()]);
        drop(v);

        // insert at middle
        let mut v: Vec<()> = Vec::with_capacity(3);
        v.push(());
        v.push(());
        v.push(());
        insert_vec_zeroed(&mut v, 1, 1);
        assert_eq!(v.len(), 4);
        assert_eq!(&*v, &[(), (), (), ()]);
        drop(v);

        // insert at end
        let mut v: Vec<()> = Vec::with_capacity(3);
        v.push(());
        v.push(());
        v.push(());
        insert_vec_zeroed(&mut v, 3, 1);
        assert_eq!(v.len(), 4);
        assert_eq!(&*v, &[(), (), (), ()]);
        drop(v);
    }
}