1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Utilities for safe zero-copy parsing and serialization.
//!
//! This crate provides utilities which make it easy to perform zero-copy
//! parsing and serialization by allowing zero-copy conversion to/from byte
//! slices.
//!
//! This is enabled by three core marker traits, each of which can be derived
//! (e.g., `#[derive(FromBytes)]`):
//! - [`FromBytes`] indicates that a type may safely be converted from an
//!   arbitrary byte sequence
//! - [`AsBytes`] indicates that a type may safely be converted *to* a byte
//!   sequence
//! - [`Unaligned`] indicates that a type's alignment requirement is 1
//!
//! Types which implement a subset of these traits can then be converted to/from
//! byte sequences with little to no runtime overhead.
//!
//! Note that these traits are ignorant of byte order. For byte order-aware
//! types, see the [`byteorder`] module.

#![cfg_attr(not(test), no_std)]
#![recursion_limit = "2048"]

pub mod byteorder;

pub use crate::byteorder::*;
pub use zerocopy_derive::*;

use core::cell::{Ref, RefMut};
use core::fmt::{self, Debug, Display, Formatter};
use core::marker::PhantomData;
use core::mem;
use core::ops::{Deref, DerefMut};
use core::slice;

// This is a hack to allow derives of FromBytes, AsBytes, and Unaligned to work
// in this crate. They assume that zerocopy is linked as an extern crate, so
// they access items from it as `zerocopy::Xxx`. This makes that still work.
mod zerocopy {
    pub use crate::*;
}

// implement an unsafe trait for a range of container types
macro_rules! impl_for_composite_types {
    ($trait:ident) => {
        unsafe impl<T> $trait for PhantomData<T> {
            fn only_derive_is_allowed_to_implement_this_trait()
            where
                Self: Sized,
            {
            }
        }
        unsafe impl<T: $trait> $trait for [T] {
            fn only_derive_is_allowed_to_implement_this_trait()
            where
                Self: Sized,
            {
            }
        }
        unsafe impl $trait for () {
            fn only_derive_is_allowed_to_implement_this_trait()
            where
                Self: Sized,
            {
            }
        }
        impl_for_array_sizes!($trait);
    };
}

// implement an unsafe trait for all signed and unsigned primitive types
macro_rules! impl_for_primitives {
    ($trait:ident) => (
        impl_for_primitives!(@inner $trait, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64);
    );
    (@inner $trait:ident, $type:ty) => (
        unsafe impl $trait for $type {
            fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
        }
    );
    (@inner $trait:ident, $type:ty, $($types:ty),*) => (
        unsafe impl $trait for $type {
            fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
        }
        impl_for_primitives!(@inner $trait, $($types),*);
    );
}

// implement an unsafe trait for all array lengths up to 1024, plus several
// useful powers-of-two beyond that, with an element type that implements
// the trait
macro_rules! impl_for_array_sizes {
    ($trait:ident) => (
        impl_for_array_sizes!(@inner $trait, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 2048, 4096, 8192, 16384, 32768, 65536);
    );
    (@inner $trait:ident, $n:expr) => (
        unsafe impl<T: $trait> $trait for [T; $n] {
            fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
        }
    );
    (@inner $trait:ident, $n:expr, $($ns:expr),*) => (
        unsafe impl<T: $trait> $trait for [T; $n] {
            fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {}
        }
        impl_for_array_sizes!(@inner $trait, $($ns),*);
    );
}

/// Types for which any byte pattern is valid.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(FromBytes)]`.
///
/// `FromBytes` types can safely be deserialized from an untrusted sequence of
/// bytes because any byte sequence corresponds to a valid instance of the type.
///
/// `FromBytes` is ignorant of byte order. For byte order-aware types, see the
/// [`byteorder`] module.
///
/// # Safety
///
/// If `T: FromBytes`, then unsafe code may assume that it is sound to treat any
/// initialized sequence of bytes of length `size_of::<T>()` as a `T`. If a type
/// is marked as `FromBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// If a type has the following properties, then it is safe to implement
/// `FromBytes` for that type:
/// - If the type is a struct:
///   - It must have a defined representation (`repr(C)`, `repr(transparent)`,
///     or `repr(packed)`)
///   - All of its fields must implement `FromBytes`
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields)
///   - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///     `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
///   - The maximum number of discriminants must be used (so that every possible
///     bit pattern is a valid one). Be very careful when using the `C`,
///     `usize`, or `isize` representations, as their size is
///     platform-dependent.
pub unsafe trait FromBytes {
    // NOTE: The Self: Sized bound makes it so that FromBytes is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;
}

/// Types which are safe to treat as an immutable byte slice.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(AsBytes)]`.
///
/// `AsBytes` types can be safely viewed as a slice of bytes. In particular,
/// this means that, in any valid instance of the type, none of the bytes of the
/// instance are uninitialized. This precludes the following types:
/// - Structs with internal padding
/// - Unions in which not all variants have the same length
///
/// `AsBytes` is ignorant of byte order. For byte order-aware types, see the
/// [`byteorder`] module.
///
/// # Custom Derive Errors
///
/// Due to the way that the custom derive for `AsBytes` is implemented, you may
/// get an error like this:
///
/// ```text
/// error[E0080]: evaluation of constant value failed
///   --> lib.rs:1:10
///    |
///  1 | #[derive(AsBytes)]
///    |          ^^^^^^^ attempt to divide by zero
/// ```
///
/// This error means that the type being annotated has padding bytes, which is
/// illegal for `AsBytes` types. Consider either adding explicit struct fields
/// where those padding bytes would be or using `#[repr(packed)]`.
///
/// # Safety
///
/// If `T: AsBytes`, then unsafe code may assume that it is sound to treat any
/// instance of the type as an immutable `[u8]` of length `size_of::<T>()`. If a
/// type is marked as `AsBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// If a type has the following properties, then it is safe to implement
/// `AsBytes` for that type
/// - If the type is a struct:
///   - It must have a defined representation (`repr(C)`, `repr(transparent)`,
///     or `repr(packed)`).
///   - All of its fields must be `AsBytes`
///   - Its layout must have no padding. This is always true for
///     `repr(transparent)` and `repr(packed)`. For `repr(C)`, see the layout
///     algorithm described in the [Rust Reference].
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields)
///   - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///     `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
///
/// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html
pub unsafe trait AsBytes {
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Get the bytes of this value.
    ///
    /// `as_bytes` provides access to the bytes of this value as an immutable
    /// byte slice.
    fn as_bytes(&self) -> &[u8] {
        unsafe {
            // NOTE: This function does not have a Self: Sized bound.
            // size_of_val works for unsized values too.
            let len = mem::size_of_val(self);
            slice::from_raw_parts(self as *const Self as *const u8, len)
        }
    }

    /// Get the bytes of this value mutably.
    ///
    /// `as_bytes_mut` provides access to the bytes of this value as a mutable
    /// byte slice.
    fn as_bytes_mut(&mut self) -> &mut [u8]
    where
        Self: FromBytes,
    {
        unsafe {
            // NOTE: This function does not have a Self: Sized bound.
            // size_of_val works for unsized values too.
            let len = mem::size_of_val(self);
            slice::from_raw_parts_mut(self as *mut Self as *mut u8, len)
        }
    }
}

impl_for_primitives!(FromBytes);
impl_for_primitives!(AsBytes);
impl_for_composite_types!(FromBytes);
impl_for_composite_types!(AsBytes);

/// Types with no alignment requirement.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(Unaligned)]`.
///
/// If `T: Unaligned`, then `align_of::<T>() == 1`.
///
/// # Safety
///
/// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a
/// reference to `T` at any memory location regardless of alignment. If a type
/// is marked as `Unaligned` which violates this contract, it may cause
/// undefined behavior.
pub unsafe trait Unaligned {
    // NOTE: The Self: Sized bound makes it so that Unaligned is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;
}

unsafe impl Unaligned for u8 {
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized,
    {
    }
}
unsafe impl Unaligned for i8 {
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized,
    {
    }
}
impl_for_composite_types!(Unaligned);

/// A length- and alignment-checked reference to a byte slice which can safely
/// be reinterpreted as another type.
///
/// `LayoutVerified` is a byte slice reference (`&[u8]`, `&mut [u8]`,
/// `Ref<[u8]>`, `RefMut<[u8]>`, etc) with the invaraint that the slice's length
/// and alignment are each greater than or equal to the length and alignment of
/// `T`. Using this invariant, it implements `Deref` for `T` so long as `T:
/// FromBytes` and `DerefMut` so long as `T: FromBytes + AsBytes`.
///
/// # Examples
///
/// `LayoutVerified` can be used to treat a sequence of bytes as a structured
/// type, and to read and write the fields of that type as if the byte slice
/// reference were simply a reference to that type.
///
/// ```rust
/// use zerocopy::{AsBytes, ByteSlice, ByteSliceMut, FromBytes, LayoutVerified, Unaligned};
///
/// #[derive(FromBytes, AsBytes, Unaligned)]
/// #[repr(C)]
/// struct UdpHeader {
///     src_port: [u8; 2],
///     dst_port: [u8; 2],
///     length: [u8; 2],
///     checksum: [u8; 2],
/// }
///
/// struct UdpPacket<B> {
///     header: LayoutVerified<B, UdpHeader>,
///     body: B,
/// }
///
/// impl<B: ByteSlice> UdpPacket<B> {
///     pub fn parse(bytes: B) -> Option<UdpPacket<B>> {
///         let (header, body) = LayoutVerified::new_unaligned_from_prefix(bytes)?;
///         Some(UdpPacket { header, body })
///     }
///
///     pub fn get_src_port(&self) -> [u8; 2] {
///         self.header.src_port
///     }
/// }
///
/// impl<B: ByteSliceMut> UdpPacket<B> {
///     pub fn set_src_port(&mut self, src_port: [u8; 2]) {
///         self.header.src_port = src_port;
///     }
/// }
/// ```
pub struct LayoutVerified<B, T: ?Sized>(B, PhantomData<T>);

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
{
    /// Construct a new `LayoutVerified`.
    ///
    /// `new` verifies that `bytes.len() == size_of::<T>()` and that `bytes` is
    /// aligned to `align_of::<T>()`, and constructs a new `LayoutVerified`. If
    /// either of these checks fail, it returns `None`.
    #[inline]
    pub fn new(bytes: B) -> Option<LayoutVerified<B, T>> {
        if bytes.len() != mem::size_of::<T>() || !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Construct a new `LayoutVerified` from the prefix of a byte slice.
    ///
    /// `new_from_prefix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and
    /// returns the remaining bytes to the caller. If either the length or
    /// alignment checks fail, it returns `None`.
    #[inline]
    pub fn new_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() || !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((LayoutVerified(bytes, PhantomData), suffix))
    }

    /// Construct a new `LayoutVerified` from the suffix of a byte slice.
    ///
    /// `new_from_suffix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If either the length or alignment checks fail, it returns
    /// `None`.
    #[inline]
    pub fn new_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        let bytes_len = bytes.len();
        if bytes_len < mem::size_of::<T>() {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(bytes_len - mem::size_of::<T>());
        if !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        Some((prefix, LayoutVerified(bytes, PhantomData)))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: ?Sized,
{
    // Get the underlying bytes.
    #[inline]
    pub fn bytes(&self) -> &[u8] {
        &self.0
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
{
    /// Construct a new `LayoutVerified` of a slice type.
    ///
    /// `new_slice` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and
    /// constructs a new `LayoutVerified`. If either of these checks fail, it
    /// returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        assert_ne!(mem::size_of::<T>(), 0);
        if bytes.len() % mem::size_of::<T>() != 0
            || !aligned_to(bytes.deref(), mem::align_of::<T>())
        {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }
}

fn map_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<LayoutVerified<B, T>>,
) -> Option<LayoutVerified<B, T>> {
    match opt {
        Some(mut lv) => {
            for b in lv.0.iter_mut() {
                *b = 0;
            }
            Some(lv)
        }
        None => None,
    }
}

fn map_prefix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<(LayoutVerified<B, T>, B)>,
) -> Option<(LayoutVerified<B, T>, B)> {
    match opt {
        Some((mut lv, rest)) => {
            for b in lv.0.iter_mut() {
                *b = 0;
            }
            Some((lv, rest))
        }
        None => None,
    }
}

fn map_suffix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<(B, LayoutVerified<B, T>)>,
) -> Option<(B, LayoutVerified<B, T>)> {
    map_prefix_tuple_zeroed(opt.map(|(a, b)| (b, a))).map(|(a, b)| (b, a))
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
{
    /// Construct a new `LayoutVerified` after zeroing the bytes.
    ///
    /// `new_zeroed` verifies that `bytes.len() == size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`, and constructs a new
    /// `LayoutVerified`. If either of these checks fail, it returns `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> {
        map_zeroed(Self::new(bytes))
    }

    /// Construct a new `LayoutVerified` from the prefix of a byte slice,
    /// zeroing the prefix.
    ///
    /// `new_from_prefix_zeroed` verifies that `bytes.len() >= size_of::<T>()`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and
    /// returns the remaining bytes to the caller. If either the length or
    /// alignment checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_from_prefix(bytes))
    }

    /// Construct a new `LayoutVerified` from the suffix of a byte slice,
    /// zeroing the suffix.
    ///
    /// `new_from_suffix_zeroed` verifies that `bytes.len() >= size_of::<T>()` and that
    /// the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If either the length or alignment checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_from_suffix(bytes))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
{
    /// Construct a new `LayoutVerified` of a slice type after zeroing the
    /// bytes.
    ///
    /// `new_slice_zeroed` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and
    /// constructs a new `LayoutVerified`. If either of these checks fail, it
    /// returns `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_zeroed(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        map_zeroed(Self::new_slice(bytes))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Construct a new `LayoutVerified` for a type with no alignment
    /// requirement.
    ///
    /// `new_unaligned` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `LayoutVerified`. If the check fails, it returns
    /// `None`.
    #[inline]
    pub fn new_unaligned(bytes: B) -> Option<LayoutVerified<B, T>> {
        if bytes.len() != mem::size_of::<T>() {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Construct a new `LayoutVerified` from the prefix of a byte slice for a
    /// type with no alignment requirement.
    ///
    /// `new_unaligned_from_prefix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. If the length check fails, it returns `None`.
    #[inline]
    pub fn new_unaligned_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((LayoutVerified(bytes, PhantomData), suffix))
    }

    /// Construct a new `LayoutVerified` from the suffix of a byte slice for a
    /// type with no alignment requirement.
    ///
    /// `new_unaligned_from_suffix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If the length check fails, it returns `None`.
    #[inline]
    pub fn new_unaligned_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        let bytes_len = bytes.len();
        if bytes_len < mem::size_of::<T>() {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(bytes_len - mem::size_of::<T>());
        Some((prefix, LayoutVerified(bytes, PhantomData)))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Construct a new `LayoutVerified` of a slice type with no alignment
    /// requirement.
    ///
    /// `new_slice_unaligned` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and constructs a new `LayoutVerified`. If the check
    /// fails, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        assert_ne!(mem::size_of::<T>(), 0);
        if bytes.len() % mem::size_of::<T>() != 0 {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Construct a new `LayoutVerified` for a type with no alignment
    /// requirement, zeroing the bytes.
    ///
    /// `new_unaligned_zeroed` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `LayoutVerified`. If the check fails, it returns
    /// `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> {
        map_zeroed(Self::new_unaligned(bytes))
    }

    /// Construct a new `LayoutVerified` from the prefix of a byte slice for a
    /// type with no alignment requirement, zeroing the prefix.
    ///
    /// `new_unaligned_from_prefix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_unaligned_from_prefix(bytes))
    }

    /// Construct a new `LayoutVerified` from the suffix of a byte slice for a
    /// type with no alignment requirement, zeroing the suffix.
    ///
    /// `new_unaligned_from_suffix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_unaligned_from_suffix(bytes))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Construct a new `LayoutVerified` for a slice type with no alignment
    /// requirement, zeroing the bytes.
    ///
    /// `new_slice_unaligned_zeroed` verifies that `bytes.len()` is a multiple
    /// of `size_of::<T>()` and constructs a new `LayoutVerified`. If the check
    /// fails, it returns `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        map_zeroed(Self::new_slice_unaligned(bytes))
    }
}

impl<'a, B, T> LayoutVerified<B, T>
where
    B: 'a + ByteSlice,
    T: FromBytes,
{
    /// Convert this `LayoutVerified` into a reference.
    ///
    /// `into_ref` consumes the `LayoutVerified`, and returns a reference to
    /// `T`.
    pub fn into_ref(self) -> &'a T {
        // NOTE: This is safe because `B` is guaranteed to live for the lifetime
        // `'a`, meaning that a) the returned reference cannot outlive the `B`
        // from which `self` was constructed and, b) no mutable methods on that
        // `B` can be called during the lifetime of the returned reference. See
        // the documentation on `deref_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, T>
where
    B: 'a + ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Convert this `LayoutVerified` into a mutable reference.
    ///
    /// `into_mut` consumes the `LayoutVerified`, and returns a mutable
    /// reference to `T`.
    pub fn into_mut(mut self) -> &'a mut T {
        // NOTE: This is safe because `B` is guaranteed to live for the lifetime
        // `'a`, meaning that a) the returned reference cannot outlive the `B`
        // from which `self` was constructed and, b) no other methods - mutable
        // or immutable - on that `B` can be called during the lifetime of the
        // returned reference. See the documentation on `deref_mut_helper` for
        // what invariants we are required to uphold.
        unsafe { self.deref_mut_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, [T]>
where
    B: 'a + ByteSlice,
    T: FromBytes,
{
    /// Convert this `LayoutVerified` into a slice reference.
    ///
    /// `into_slice` consumes the `LayoutVerified`, and returns a reference to
    /// `[T]`.
    pub fn into_slice(self) -> &'a [T] {
        // NOTE: This is safe because `B` is guaranteed to live for the lifetime
        // `'a`, meaning that a) the returned reference cannot outlive the `B`
        // from which `self` was constructed and, b) no mutable methods on that
        // `B` can be called during the lifetime of the returned reference. See
        // the documentation on `deref_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_slice_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, [T]>
where
    B: 'a + ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Convert this `LayoutVerified` into a mutable slice reference.
    ///
    /// `into_mut_slice` consumes the `LayoutVerified`, and returns a mutable reference to
    /// `[T]`.
    pub fn into_mut_slice(mut self) -> &'a mut [T] {
        // NOTE: This is safe because `B` is guaranteed to live for the lifetime
        // `'a`, meaning that a) the returned reference cannot outlive the `B`
        // from which `self` was constructed and, b) no other methods - mutable
        // or immutable - on that `B` can be called during the lifetime of the
        // returned reference. See the documentation on `deref_mut_slice_helper`
        // for what invariants we are required to uphold.
        unsafe { self.deref_mut_slice_helper() }
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Create an immutable reference to `T` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// The type bounds on this method guarantee that it is safe to create an
    /// immutable reference to `T` from `self`. However, since the lifetime `'a`
    /// is not required to be shorter than the lifetime of the reference to
    /// `self`, the caller must guarantee that the lifetime `'a` is valid for
    /// this reference. In particular, the referent must exist for all of `'a`,
    /// and no mutable references to the same memory may be constructed during
    /// `'a`.
    unsafe fn deref_helper<'a>(&self) -> &'a T {
        &*(self.0.as_ptr() as *const T)
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Create a mutable reference to `T` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// The type bounds on this method guarantee that it is safe to create a
    /// mutable reference to `T` from `self`. However, since the lifetime `'a`
    /// is not required to be shorter than the lifetime of the reference to
    /// `self`, the caller must guarantee that the lifetime `'a` is valid for
    /// this reference. In particular, the referent must exist for all of `'a`,
    /// and no other references - mutable or immutable - to the same memory may
    /// be constructed during `'a`.
    unsafe fn deref_mut_helper<'a>(&mut self) -> &'a mut T {
        &mut *(self.0.as_mut_ptr() as *mut T)
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Create an immutable reference to `[T]` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// `deref_slice_helper` has the same safety requirements as `deref_helper`.
    unsafe fn deref_slice_helper<'a>(&self) -> &'a [T] {
        let len = self.0.len();
        let elem_size = mem::size_of::<T>();
        debug_assert_ne!(elem_size, 0);
        debug_assert_eq!(len % elem_size, 0);
        let elems = len / elem_size;
        slice::from_raw_parts(self.0.as_ptr() as *const T, elems)
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Create a mutable reference to `[T]` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// `deref_mut_slice_helper` has the same safety requirements as
    /// `deref_mut_helper`.
    unsafe fn deref_mut_slice_helper<'a>(&mut self) -> &'a mut [T] {
        let len = self.0.len();
        let elem_size = mem::size_of::<T>();
        debug_assert_ne!(elem_size, 0);
        debug_assert_eq!(len % elem_size, 0);
        let elems = len / elem_size;
        slice::from_raw_parts_mut(self.0.as_mut_ptr() as *mut T, elems)
    }
}

fn aligned_to(bytes: &[u8], align: usize) -> bool {
    (bytes as *const _ as *const () as usize) % align == 0
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: ?Sized,
{
    // Get the underlying bytes mutably.
    #[inline]
    pub fn bytes_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl<B, T> Deref for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        // NOTE: This is safe because the lifetime of `self` is the same as the
        // lifetime of the return value, meaning that a) the returned reference
        // cannot outlive `self` and, b) no mutable methods on `self` can be
        // called during the lifetime of the returned reference. See the
        // documentation on `deref_helper` for what invariants we are required
        // to uphold.
        unsafe { self.deref_helper() }
    }
}

impl<B, T> DerefMut for LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        // NOTE: This is safe because the lifetime of `self` is the same as the
        // lifetime of the return value, meaning that a) the returned reference
        // cannot outlive `self` and, b) no other methods on `self` can be
        // called during the lifetime of the returned reference. See the
        // documentation on `deref_mut_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_mut_helper() }
    }
}

impl<B, T> Deref for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = [T];
    #[inline]
    fn deref(&self) -> &[T] {
        // NOTE: This is safe because the lifetime of `self` is the same as the
        // lifetime of the return value, meaning that a) the returned reference
        // cannot outlive `self` and, b) no mutable methods on `self` can be
        // called during the lifetime of the returned reference. See the
        // documentation on `deref_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_slice_helper() }
    }
}

impl<B, T> DerefMut for LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut [T] {
        // NOTE: This is safe because the lifetime of `self` is the same as the
        // lifetime of the return value, meaning that a) the returned reference
        // cannot outlive `self` and, b) no other methods on `self` can be
        // called during the lifetime of the returned reference. See the
        // documentation on `deref_mut_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_mut_slice_helper() }
    }
}

impl<T, B> Display for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
        let inner: &T = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Debug for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
        let inner: &T = self;
        fmt.debug_tuple("LayoutVerified").field(&inner).finish()
    }
}

impl<T, B> Display for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
    [T]: Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
        let inner: &[T] = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Debug for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
        let inner: &[T] = self;
        fmt.debug_tuple("LayoutVerified").field(&inner).finish()
    }
}

mod sealed {
    use core::cell::{Ref, RefMut};

    pub trait Sealed {}
    impl<'a> Sealed for &'a [u8] {}
    impl<'a> Sealed for &'a mut [u8] {}
    impl<'a> Sealed for Ref<'a, [u8]> {}
    impl<'a> Sealed for RefMut<'a, [u8]> {}
}

// ByteSlice and ByteSliceMut abstract over [u8] references (&[u8], &mut [u8],
// Ref<[u8]>, RefMut<[u8]>, etc). We rely on various behaviors of these
// references such as that a given reference will never changes its length
// between calls to deref() or deref_mut(), and that split_at() works as
// expected. If ByteSlice or ByteSliceMut were not sealed, consumers could
// implement them in a way that violated these behaviors, and would break our
// unsafe code. Thus, we seal them and implement it only for known-good
// reference types. For the same reason, they're unsafe traits.

/// A mutable or immutable reference to a byte slice.
///
/// `ByteSlice` abstracts over the mutability of a byte slice reference, and is
/// implemented for various special reference types such as `Ref<[u8]>` and
/// `RefMut<[u8]>`.
pub unsafe trait ByteSlice: Deref<Target = [u8]> + Sized + self::sealed::Sealed {
    fn as_ptr(&self) -> *const u8;
    fn split_at(self, mid: usize) -> (Self, Self);
}

/// A mutable reference to a byte slice.
///
/// `ByteSliceMut` abstracts over various ways of storing a mutable reference to
/// a byte slice, and is implemented for various special reference types such as
/// `RefMut<[u8]>`.
pub unsafe trait ByteSliceMut: ByteSlice + DerefMut {
    fn as_mut_ptr(&mut self) -> *mut u8;
}

unsafe impl<'a> ByteSlice for &'a [u8] {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at(self, mid)
    }
}
unsafe impl<'a> ByteSlice for &'a mut [u8] {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at_mut(self, mid)
    }
}
unsafe impl<'a> ByteSlice for Ref<'a, [u8]> {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        Ref::map_split(self, |slice| <[u8]>::split_at(slice, mid))
    }
}
unsafe impl<'a> ByteSlice for RefMut<'a, [u8]> {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        RefMut::map_split(self, |slice| <[u8]>::split_at_mut(slice, mid))
    }
}

unsafe impl<'a> ByteSliceMut for &'a mut [u8] {
    fn as_mut_ptr(&mut self) -> *mut u8 {
        <[u8]>::as_mut_ptr(self)
    }
}
unsafe impl<'a> ByteSliceMut for RefMut<'a, [u8]> {
    fn as_mut_ptr(&mut self) -> *mut u8 {
        <[u8]>::as_mut_ptr(self)
    }
}

#[cfg(test)]
mod tests {
    #![allow(clippy::unreadable_literal)]

    use core::ops::Deref;
    use core::ptr;

    use super::*;

    // B should be [u8; N]. T will require that the entire structure is aligned
    // to the alignment of T.
    #[derive(Default)]
    struct AlignedBuffer<T, B> {
        buf: B,
        _t: T,
    }

    impl<T, B: Default> AlignedBuffer<T, B> {
        fn clear_buf(&mut self) {
            self.buf = B::default();
        }
    }

    // convert a u64 to bytes using this platform's endianness
    fn u64_to_bytes(u: u64) -> [u8; 8] {
        unsafe { ptr::read(&u as *const u64 as *const [u8; 8]) }
    }

    // convert a u128 to bytes using this platform's endianness
    fn u128_to_bytes(u: u128) -> [u8; 16] {
        unsafe { ptr::read(&u as *const u128 as *const [u8; 16]) }
    }

    #[test]
    fn test_address() {
        // test that the Deref and DerefMut implementations return a reference which
        // points to the right region of memory

        let buf = [0];
        let lv = LayoutVerified::<_, u8>::new(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr = lv.deref() as *const u8;
        assert_eq!(buf_ptr, deref_ptr);

        let buf = [0];
        let lv = LayoutVerified::<_, [u8]>::new_slice(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr = lv.deref().as_ptr();
        assert_eq!(buf_ptr, deref_ptr);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations
    fn test_new_helper<'a>(mut lv: LayoutVerified<&'a mut [u8], u64>) {
        // assert that the value starts at 0
        assert_eq!(*lv, 0);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: u64 = 0xFF00FF00FF00FF00;
        *lv = VAL1;
        assert_eq!(lv.bytes(), &u64_to_bytes(VAL1));

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: u64 = !VAL1; // different from VAL1
        lv.bytes_mut().copy_from_slice(&u64_to_bytes(VAL2)[..]);
        assert_eq!(*lv, VAL2);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations; pass a value with
    // byte length 16/typed length 2
    fn test_new_helper_slice<'a>(mut lv: LayoutVerified<&'a mut [u8], [u64]>) {
        // assert that the value starts at [0, 0]
        assert_eq!(*lv, [0, 0]);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: u64 = 0xFF00FF00FF00FF00;
        const VAL1_DOUBLED: u128 = 0xFF00FF00FF00FF00FF00FF00FF00FF00;
        lv[0] = VAL1;
        lv[1] = VAL1;
        assert_eq!(lv.bytes(), &u128_to_bytes(VAL1_DOUBLED));

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: u64 = !VAL1; // different from VAL1
        const VAL2_DOUBLED: u128 = !VAL1_DOUBLED;
        lv.bytes_mut().copy_from_slice(&u128_to_bytes(VAL2_DOUBLED)[..]);
        assert_eq!(*lv, [VAL2, VAL2]);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations
    fn test_new_helper_unaligned<'a>(mut lv: LayoutVerified<&'a mut [u8], [u8; 8]>) {
        // assert that the value starts at 0
        assert_eq!(*lv, [0; 8]);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: [u8; 8] = [0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00];
        *lv = VAL1;
        assert_eq!(lv.bytes(), &VAL1);

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: [u8; 8] = [0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF]; // different from VAL1
        lv.bytes_mut().copy_from_slice(&VAL2[..]);
        assert_eq!(*lv, VAL2);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations; pass a value with
    // length 16
    fn test_new_helper_slice_unaligned<'a>(mut lv: LayoutVerified<&'a mut [u8], [u8]>) {
        // assert that the value starts at [0; 16]
        assert_eq!(*lv, [0u8; 16][..]);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: [u8; 16] = [
            0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
            0xFF, 0x00,
        ];
        lv.copy_from_slice(&VAL1[..]);
        assert_eq!(lv.bytes(), &VAL1);

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: [u8; 16] = [
            0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF,
            0x00, 0xFF,
        ];
        lv.bytes_mut().copy_from_slice(&VAL2[..]);
        assert_eq!(*lv, VAL2);
    }

    #[test]
    fn test_new_aligned_sized() {
        // Test that a properly-aligned, properly-sized buffer works for new,
        // new_from_preifx, and new_from_suffix, and that new_from_prefix and
        // new_from_suffix return empty slices. Test that a properly-aligned
        // buffer whose length is a multiple of the element size works for
        // new_slice. Test that xxx_zeroed behaves the same, and zeroes the
        // memory.

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 8]>::default();
        // buf.buf should be aligned to 8, so this should always succeed
        test_new_helper(LayoutVerified::<_, u64>::new(&mut buf.buf[..]).unwrap());
        buf.buf = [0xFFu8; 8];
        test_new_helper(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).unwrap());
        {
            // in a block so that lv and suffix don't live too long
            buf.clear_buf();
            let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix(&mut buf.buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.clear_buf();
            let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix(&mut buf.buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(lv);
        }

        // a buffer with alignment 8 and length 16
        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        // buf.buf should be aligned to 8 and have a length which is a multiple
        // of size_of::<u64>(), so this should always succeed
        test_new_helper_slice(LayoutVerified::<_, [u64]>::new_slice(&mut buf.buf[..]).unwrap());
        buf.buf = [0xFFu8; 16];
        test_new_helper_slice(
            LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[..]).unwrap(),
        );
    }

    #[test]
    fn test_new_unaligned_sized() {
        // Test that an unaligned, properly-sized buffer works for
        // new_unaligned, new_unaligned_from_prefix, and
        // new_unaligned_from_suffix, and that new_unaligned_from_prefix
        // new_unaligned_from_suffix return empty slices. Test that an unaligned
        // buffer whose length is a multiple of the element size works for
        // new_slice. Test that xxx_zeroed behaves the same, and zeroes the
        // memory.

        let mut buf = [0u8; 8];
        test_new_helper_unaligned(
            LayoutVerified::<_, [u8; 8]>::new_unaligned(&mut buf[..]).unwrap(),
        );
        buf = [0xFFu8; 8];
        test_new_helper_unaligned(
            LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf[..]).unwrap(),
        );
        {
            // in a block so that lv and suffix don't live too long
            buf = [0u8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..])
                    .unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0u8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..])
                    .unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(lv);
        }

        let mut buf = [0u8; 16];
        // buf.buf should be aligned to 8 and have a length which is a multiple
        // of size_of::<u64>(), so this should always succeed
        test_new_helper_slice_unaligned(
            LayoutVerified::<_, [u8]>::new_slice(&mut buf[..]).unwrap(),
        );
        buf = [0xFFu8; 16];
        test_new_helper_slice_unaligned(
            LayoutVerified::<_, [u8]>::new_slice_zeroed(&mut buf[..]).unwrap(),
        );
    }

    #[test]
    fn test_new_oversized() {
        // Test that a properly-aligned, overly-sized buffer works for
        // new_from_prefix and new_from_suffix, and that they return the
        // remainder and prefix of the slice respectively. Test that xxx_zeroed
        // behaves the same, and zeroes the memory.

        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        {
            // in a block so that lv and suffix don't live too long
            // buf.buf should be aligned to 8, so this should always succeed
            let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix(&mut buf.buf[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 16];
            // buf.buf should be aligned to 8, so this should always succeed
            let (lv, suffix) =
                LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).unwrap();
            // assert that the suffix wasn't zeroed
            assert_eq!(suffix, &[0xFFu8; 8]);
            test_new_helper(lv);
        }
        {
            buf.clear_buf();
            // buf.buf should be aligned to 8, so this should always succeed
            let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix(&mut buf.buf[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 16];
            // buf.buf should be aligned to 8, so this should always succeed
            let (prefix, lv) =
                LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).unwrap();
            // assert that the prefix wasn't zeroed
            assert_eq!(prefix, &[0xFFu8; 8]);
            test_new_helper(lv);
        }
    }

    #[test]
    fn test_new_unaligned_oversized() {
        // Test than an unaligned, overly-sized buffer works for
        // new_unaligned_from_prefix and new_unaligned_from_suffix, and that
        // they return the remainder and prefix of the slice respectively. Test
        // that xxx_zeroed behaves the same, and zeroes the memory.

        let mut buf = [0u8; 16];
        {
            // in a block so that lv and suffix don't live too long
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..])
                    .unwrap();
            // assert that the suffix wasn't zeroed
            assert_eq!(suffix, &[0xFF; 8]);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0u8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..])
                    .unwrap();
            // assert that the prefix wasn't zeroed
            assert_eq!(prefix, &[0xFF; 8]);
            test_new_helper_unaligned(lv);
        }
    }

    #[test]
    #[allow(clippy::cyclomatic_complexity)]
    fn test_new_fail() {
        // fail because the buffer is too large

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        // buf.buf should be aligned to 8, so only the length check should fail
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.buf[..]).is_none());

        // fail because the buffer is too small

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 4]>::default();
        // buf.buf should be aligned to 8, so only the length check should fail
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf.buf[..])
            .is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf.buf[..])
            .is_none());

        // fail because the length is not a multiple of the element size

        let mut buf = AlignedBuffer::<u64, [u8; 12]>::default();
        // buf.buf has length 12, but element size is 8
        assert!(LayoutVerified::<_, [u64]>::new_slice(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned(&buf.buf[..]).is_none());
        assert!(
            LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_zeroed(&mut buf.buf[..]).is_none()
        );

        // fail because the alignment is insufficient

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 12]>::default();
        // slicing from 4, we get a buffer with size 8 (so the length check
        // should succeed) but an alignment of only 4, which is insufficient
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix(&buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice(&buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, [u64]>::new_slice_zeroed(&mut buf.buf[4..]).is_none());
        // slicing from 4 should be unnecessary because new_from_suffix[_zeroed]
        // use the suffix of the slice
        assert!(LayoutVerified::<_, u64>::new_from_suffix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).is_none());
    }

    #[test]
    #[should_panic]
    fn test_new_slice_zst_panics() {
        LayoutVerified::<_, [()]>::new_slice(&[0u8][..]);
    }

    #[test]
    #[should_panic]
    fn test_new_slice_zeroed_zst_panics() {
        LayoutVerified::<_, [()]>::new_slice_zeroed(&mut [0u8][..]);
    }

    #[test]
    #[should_panic]
    fn test_new_slice_unaligned_zst_panics() {
        LayoutVerified::<_, [()]>::new_slice_unaligned(&[0u8][..]);
    }

    #[test]
    #[should_panic]
    fn test_new_slice_unaligned_zeroed_zst_panics() {
        LayoutVerified::<_, [()]>::new_slice_unaligned_zeroed(&mut [0u8][..]);
    }

    #[test]
    fn test_as_bytes_methods() {
        #[derive(Debug, Eq, PartialEq, FromBytes, AsBytes)]
        #[repr(C)]
        struct Foo {
            a: u32,
            b: u32,
        }

        let mut foo = Foo { a: 1, b: 2 };
        // Test that we can access the underlying bytes, and that we get the
        // right bytes and the right number of bytes.
        assert_eq!(foo.as_bytes(), [1, 0, 0, 0, 2, 0, 0, 0]);
        // Test that changes to the underlying byte slices are reflected in the
        // original object.
        foo.as_bytes_mut()[0] = 3;
        assert_eq!(foo, Foo { a: 3, b: 2 });

        // Do the same tests for a slice, which ensures that this logic works
        // for unsized types as well.
        let foo = &mut [Foo { a: 1, b: 2 }, Foo { a: 3, b: 4 }];
        assert_eq!(foo.as_bytes(), [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0]);
        foo.as_bytes_mut()[8] = 5;
        assert_eq!(foo, &mut [Foo { a: 1, b: 2 }, Foo { a: 5, b: 4 }]);
    }

    #[test]
    fn test_array() {
        // This is a hack, as per above in `test_as_bytes_methods`.
        mod zerocopy {
            pub use crate::*;
        }
        #[derive(FromBytes, AsBytes)]
        #[repr(C)]
        struct Foo {
            a: [u16; 33],
        }

        let foo = Foo { a: [0xFFFF; 33] };
        let expected = [0xFFu8; 66];
        assert_eq!(foo.as_bytes(), &expected[..]);
    }

    #[test]
    fn test_display_debug() {
        let buf = AlignedBuffer::<u64, [u8; 8]>::default();
        let lv = LayoutVerified::<_, u64>::new(&buf.buf[..]).unwrap();
        assert_eq!(format!("{}", lv), "0");
        assert_eq!(format!("{:?}", lv), "LayoutVerified(0)");

        let buf = AlignedBuffer::<u64, [u8; 8]>::default();
        let lv = LayoutVerified::<_, [u64]>::new_slice(&buf.buf[..]).unwrap();
        assert_eq!(format!("{:?}", lv), "LayoutVerified([0])");
    }
}