1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Utilities for safe zero-copy parsing and serialization.
//!
//! This crate provides utilities which make it easy to perform zero-copy
//! parsing and serialization by allowing zero-copy conversion to/from byte
//! slices.
//!
//! This is enabled by three core marker traits:
//! - [`FromBytes`] indicates that a type may safely be converted from an
//!   arbitrary byte sequence
//! - [`AsBytes`] indicates that a type may safely be converted *to* a byte
//!   sequence
//! - [`Unaligned`] indicates that a type's alignment requirement is 1
//!
//! Types which implement a subset of these traits can then be converted to/from
//! byte sequences with little to no runtime overhead.

#![feature(refcell_map_split)]
#![cfg_attr(not(test), no_std)]

#[cfg(test)]
extern crate core;
use core::cell::{Ref, RefMut};
use core::fmt::{self, Debug, Display, Formatter};
use core::marker::PhantomData;
use core::mem;
use core::ops::{Deref, DerefMut};

// implement an unsafe trait for all signed and unsigned primitive types
macro_rules! impl_for_primitives {
    ($trait:ident) => (
        impl_for_primitives!(@inner $trait, u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize);
    );
    (@inner $trait:ident, $type:ty) => (
        unsafe impl $trait for $type {}
    );
    (@inner $trait:ident, $type:ty, $($types:ty),*) => (
        unsafe impl $trait for $type {}
        impl_for_primitives!(@inner $trait, $($types),*);
    );
}

// implement an unsafe trait for all array lengths up to 32 with an element type
// which implements the trait
macro_rules! impl_for_array_sizes {
    ($trait:ident) => (
        impl_for_array_sizes!(@inner $trait, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32);
    );
    (@inner $trait:ident, $n:expr) => (
        unsafe impl<T: $trait> $trait for [T; $n] {}
    );
    (@inner $trait:ident, $n:expr, $($ns:expr),*) => (
        unsafe impl<T: $trait> $trait for [T; $n] {}
        impl_for_array_sizes!(@inner $trait, $($ns),*);
    );
}

/// Types for which any byte pattern is valid.
///
/// `FromBytes` types can safely be deserialized from an untrusted sequence of
/// bytes because any byte sequence corresponds to a valid instance of the type.
///
/// # Safety
///
/// If `T: FromBytes`, then unsafe code may assume that it is sound to treat any
/// initialized sequence of bytes of length `size_of::<T>()` as a `T`. If a type
/// is marked as `FromBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// If a type has the following properties, then it is safe to implement
/// `FromBytes` for that type:
/// - If the type is a struct:
///   - It must be `repr(C)` or `repr(transparent)`
///   - All of its fields must implement `FromBytes`
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields)
///   - It must be `repr(u8)`, `repr(u16)`, `repr(u32)`, or `repr(u64)`
///   - The maximum number of discriminants must be used (so that every possible
///     bit pattern is a valid one)
pub unsafe trait FromBytes {}

/// Types which are safe to treat as an immutable byte slice.
///
/// `AsBytes` types can be safely viewed as a slice of bytes. In particular,
/// this means that, in any valid instance of the type, none of the bytes of the
/// instance are uninitialized. This precludes the following types:
/// - Structs with internal padding
/// - Unions in which not all variants have the same length
///
/// # Safety
///
/// If `T: AsBytes`, then unsafe code may assume that it is sound to treat any
/// instance of the type as an immutable `[u8]` of the appropriate length. If a
/// type is marked as `AsBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// If a type has the following properties, then it is safe to implement
/// `AsBytes` for that type:
/// - If the type is a struct:
///   - It must be `repr(C)` or `repr(transparent)`
///   - If it is `repr(C)`, its layout must have no inter-field padding (this
///     can be accomplished either by using `repr(packed)` or by manually adding
///     padding fields)
///   - All of its fields must implement `AsBytes`
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields)
///   - It must be `repr(u8)`, `repr(u16)`, `repr(u32)`, or `repr(u64)`
pub unsafe trait AsBytes {}

impl_for_primitives!(FromBytes);
impl_for_primitives!(AsBytes);
impl_for_array_sizes!(FromBytes);
impl_for_array_sizes!(AsBytes);

/// Types with no alignment requirement.
///
/// If `T: Unaligned`, then `align_of::<T>() == 1`.
///
/// # Safety
///
/// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a
/// reference to `T` at any memory location regardless of alignment. If a type
/// is marked as `Unaligned` which violates this contract, it may cause
/// undefined behavior.
pub unsafe trait Unaligned {}

unsafe impl Unaligned for u8 {}
unsafe impl Unaligned for i8 {}
impl_for_array_sizes!(Unaligned);

/// A length- and alignment-checked reference to a byte slice which can safely
/// be reinterpreted as another type.
///
/// `LayoutVerified` is a byte slice reference (`&[u8]`, `&mut [u8]`,
/// `Ref<[u8]>`, `RefMut<[u8]>`, etc) with the invaraint that the slice's length
/// and alignment are each greater than or equal to the length and alignment of
/// `T`. Using this invariant, it implements `Deref` for `T` so long as `T:
/// FromBytes` and `DerefMut` so long as `T: FromBytes + AsBytes`.
///
/// # Examples
///
/// `LayoutVerified` can be used to treat a sequence of bytes as a structured
/// type, and to read and write the fields of that type as if the byte slice
/// reference were simply a reference to that type.
///
/// ```rust
/// use zerocopy::{AsBytes, ByteSlice, ByteSliceMut, FromBytes, LayoutVerified, Unaligned};
///
/// #[repr(C)]
/// struct UdpHeader {
///     src_port: [u8; 2],
///     dst_port: [u8; 2],
///     length: [u8; 2],
///     checksum: [u8; 2],
/// }
///
/// unsafe impl FromBytes for UdpHeader {}
/// unsafe impl AsBytes for UdpHeader {}
/// unsafe impl Unaligned for UdpHeader {}
///
/// struct UdpPacket<B> {
///     header: LayoutVerified<B, UdpHeader>,
///     body: B,
/// }
///
/// impl<B: ByteSlice> UdpPacket<B> {
///     pub fn parse(bytes: B) -> Option<UdpPacket<B>> {
///         let (header, body) = LayoutVerified::new_unaligned_from_prefix(bytes)?;
///         Some(UdpPacket { header, body })
///     }
///
///     pub fn get_src_port(&self) -> [u8; 2] {
///         self.header.src_port
///     }
/// }
///
/// impl<B: ByteSliceMut> UdpPacket<B> {
///     pub fn set_src_port(&mut self, src_port: [u8; 2]) {
///         self.header.src_port = src_port;
///     }
/// }
/// ```
pub struct LayoutVerified<B, T>(B, PhantomData<T>);

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
{
    /// Construct a new `LayoutVerified`.
    ///
    /// `new` verifies that `bytes.len() == size_of::<T>()` and that `bytes` is
    /// aligned to `align_of::<T>()`, and constructs a new `LayoutVerified`. If
    /// either of these checks fail, it returns `None`.
    #[inline]
    pub fn new(bytes: B) -> Option<LayoutVerified<B, T>> {
        if bytes.len() != mem::size_of::<T>() || !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Construct a new `LayoutVerified` from the prefix of a byte slice.
    ///
    /// `new_from_prefix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and
    /// returns the remaining bytes to the caller. If either the length or
    /// alignment checks fail, it returns `None`.
    #[inline]
    pub fn new_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() || !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((LayoutVerified(bytes, PhantomData), suffix))
    }

    /// Construct a new `LayoutVerified` from the suffix of a byte slice.
    ///
    /// `new_from_suffix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If either the length or alignment checks fail, it returns
    /// `None`.
    #[inline]
    pub fn new_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        let bytes_len = bytes.len();
        if bytes_len < mem::size_of::<T>() {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(bytes_len - mem::size_of::<T>());
        if !aligned_to(bytes.deref(), mem::align_of::<T>()) {
            return None;
        }
        Some((prefix, LayoutVerified(bytes, PhantomData)))
    }

    #[inline]
    pub fn bytes(&self) -> &[u8] {
        &self.0
    }
}

fn map_zeroed<B: ByteSliceMut, T>(
    opt: Option<LayoutVerified<B, T>>,
) -> Option<LayoutVerified<B, T>> {
    match opt {
        Some(mut lv) => {
            for b in lv.0.iter_mut() {
                *b = 0;
            }
            Some(lv)
        }
        None => None,
    }
}

fn map_prefix_tuple_zeroed<B: ByteSliceMut, T>(
    opt: Option<(LayoutVerified<B, T>, B)>,
) -> Option<(LayoutVerified<B, T>, B)> {
    match opt {
        Some((mut lv, rest)) => {
            for b in lv.0.iter_mut() {
                *b = 0;
            }
            Some((lv, rest))
        }
        None => None,
    }
}

fn map_suffix_tuple_zeroed<B: ByteSliceMut, T>(
    opt: Option<(B, LayoutVerified<B, T>)>,
) -> Option<(B, LayoutVerified<B, T>)> {
    map_prefix_tuple_zeroed(opt.map(|(a, b)| (b, a))).map(|(a, b)| (b, a))
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
{
    /// Construct a new `LayoutVerified` after zeroing the bytes.
    ///
    /// `new_zeroed` verifies that `bytes.len() == size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`, and constructs a new
    /// `LayoutVerified`. If either of these checks fail, it returns `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> {
        map_zeroed(Self::new(bytes))
    }

    /// Construct a new `LayoutVerified` from the prefix of a byte slice,
    /// zeroing the prefix.
    ///
    /// `new_from_prefix_zeroed` verifies that `bytes.len() >= size_of::<T>()`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and
    /// returns the remaining bytes to the caller. If either the length or
    /// alignment checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_from_prefix(bytes))
    }

    /// Construct a new `LayoutVerified` from the suffix of a byte slice,
    /// zeroing the suffix.
    ///
    /// `new_from_suffix_zeroed` verifies that `bytes.len() >= size_of::<T>()` and that
    /// the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If either the length or alignment checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_from_suffix(bytes))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Construct a new `LayoutVerified` for a type with no alignment
    /// requirement.
    ///
    /// `new_unaligned` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `LayoutVerified`. If the check fails, it returns
    /// `None`.
    #[inline]
    pub fn new_unaligned(bytes: B) -> Option<LayoutVerified<B, T>> {
        if bytes.len() != mem::size_of::<T>() {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Construct a new `LayoutVerified` from the prefix of a byte slice for a
    /// type with no alignment requirement.
    ///
    /// `new_unaligned_from_prefix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. If the length check fails, it returns `None`.
    #[inline]
    pub fn new_unaligned_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((LayoutVerified(bytes, PhantomData), suffix))
    }

    /// Construct a new `LayoutVerified` from the suffix of a byte slice for a
    /// type with no alignment requirement.
    ///
    /// `new_unaligned_from_suffix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If the length check fails, it returns `None`.
    #[inline]
    pub fn new_unaligned_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        let bytes_len = bytes.len();
        if bytes_len < mem::size_of::<T>() {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(bytes_len - mem::size_of::<T>());
        Some((prefix, LayoutVerified(bytes, PhantomData)))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Construct a new `LayoutVerified` for a type with no alignment
    /// requirement, zeroing the bytes.
    ///
    /// `new_unaligned_zeroed` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `LayoutVerified`. If the check fails, it returns
    /// `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> {
        map_zeroed(Self::new_unaligned(bytes))
    }

    /// Construct a new `LayoutVerified` from the prefix of a byte slice for a
    /// type with no alignment requirement, zeroing the prefix.
    ///
    /// `new_unaligned_from_prefix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_unaligned_from_prefix(bytes))
    }

    /// Construct a new `LayoutVerified` from the suffix of a byte slice for a
    /// type with no alignment requirement, zeroing the suffix.
    ///
    /// `new_unaligned_from_suffix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_unaligned_from_suffix(bytes))
    }
}

fn aligned_to(bytes: &[u8], align: usize) -> bool {
    (bytes as *const _ as *const () as usize) % align == 0
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
{
    #[inline]
    pub fn bytes_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl<B, T> Deref for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        unsafe { &mut *(self.0.as_ptr() as *mut T) }
    }
}

impl<B, T> DerefMut for LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *(self.0.as_mut_ptr() as *mut T) }
    }
}

impl<T, B> Display for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
        let inner: &T = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Debug for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
        let inner: &T = self;
        fmt.debug_tuple("LayoutVerified").field(&inner).finish()
    }
}

mod sealed {
    use core::cell::{Ref, RefMut};

    pub trait Sealed {}
    impl<'a> Sealed for &'a [u8] {}
    impl<'a> Sealed for &'a mut [u8] {}
    impl<'a> Sealed for Ref<'a, [u8]> {}
    impl<'a> Sealed for RefMut<'a, [u8]> {}
}

// ByteSlice and ByteSliceMut abstract over [u8] references (&[u8], &mut [u8],
// Ref<[u8]>, RefMut<[u8]>, etc). We rely on various behaviors of these
// references such as that a given reference will never changes its length
// between calls to deref() or deref_mut(), and that split_at() works as
// expected. If ByteSlice or ByteSliceMut were not sealed, consumers could
// implement them in a way that violated these behaviors, and would break our
// unsafe code. Thus, we seal them and implement it only for known-good
// reference types. For the same reason, they're unsafe traits.

/// A mutable or immutable reference to a byte slice.
///
/// `ByteSlice` abstracts over the mutability of a byte slice reference, and is
/// implemented for various special reference types such as `Ref<[u8]>` and
/// `RefMut<[u8]>`.
pub unsafe trait ByteSlice: Deref<Target = [u8]> + Sized + self::sealed::Sealed {
    fn as_ptr(&self) -> *const u8;
    fn split_at(self, mid: usize) -> (Self, Self);
}

/// A mutable reference to a byte slice.
///
/// `ByteSliceMut` abstracts over various ways of storing a mutable reference to
/// a byte slice, and is implemented for various special reference types such as
/// `RefMut<[u8]>`.
pub unsafe trait ByteSliceMut: ByteSlice + DerefMut {
    fn as_mut_ptr(&mut self) -> *mut u8;
}

unsafe impl<'a> ByteSlice for &'a [u8] {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at(self, mid)
    }
}
unsafe impl<'a> ByteSlice for &'a mut [u8] {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at_mut(self, mid)
    }
}
unsafe impl<'a> ByteSlice for Ref<'a, [u8]> {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        Ref::map_split(self, |slice| <[u8]>::split_at(slice, mid))
    }
}
unsafe impl<'a> ByteSlice for RefMut<'a, [u8]> {
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }
    fn split_at(self, mid: usize) -> (Self, Self) {
        RefMut::map_split(self, |slice| <[u8]>::split_at_mut(slice, mid))
    }
}

unsafe impl<'a> ByteSliceMut for &'a mut [u8] {
    fn as_mut_ptr(&mut self) -> *mut u8 {
        <[u8]>::as_mut_ptr(self)
    }
}
unsafe impl<'a> ByteSliceMut for RefMut<'a, [u8]> {
    fn as_mut_ptr(&mut self) -> *mut u8 {
        <[u8]>::as_mut_ptr(self)
    }
}

#[cfg(test)]
mod tests {
    use core::ops::Deref;
    use core::ptr;

    use super::LayoutVerified;

    // B should be [u8; N]. T will require that the entire structure is aligned
    // to the alignment of T.
    #[derive(Default)]
    struct AlignedBuffer<T, B> {
        buf: B,
        _t: T,
    }

    impl<T, B: Default> AlignedBuffer<T, B> {
        fn clear_buf(&mut self) {
            self.buf = B::default();
        }
    }

    // convert a u64 to bytes using this platform's endianness
    fn u64_to_bytes(u: u64) -> [u8; 8] {
        unsafe { ptr::read(&u as *const u64 as *const [u8; 8]) }
    }

    #[test]
    fn test_address() {
        // test that the Deref and DerefMut implementations return a reference which
        // points to the right region of memory

        let buf = [0];
        let lv = LayoutVerified::<_, u8>::new(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr = lv.deref() as *const u8;
        assert_eq!(buf_ptr, deref_ptr);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations
    fn test_new_helper<'a>(mut lv: LayoutVerified<&'a mut [u8], u64>) {
        // assert that the value starts at 0
        assert_eq!(*lv, 0);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: u64 = 0xFF00FF00FF00FF00;
        *lv = VAL1;
        assert_eq!(lv.bytes(), &u64_to_bytes(VAL1));

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: u64 = !VAL1; // different from VAL1
        lv.bytes_mut().copy_from_slice(&u64_to_bytes(VAL2)[..]);
        assert_eq!(*lv, VAL2);
    }

    // verify that values written to a LayoutVerified are properly shared
    // between the typed and untyped representations
    fn test_new_helper_unaligned<'a>(mut lv: LayoutVerified<&'a mut [u8], [u8; 8]>) {
        // assert that the value starts at 0
        assert_eq!(*lv, [0; 8]);

        // assert that values written to the typed value are reflected in the
        // byte slice
        const VAL1: [u8; 8] = [0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00];
        *lv = VAL1;
        assert_eq!(lv.bytes(), &VAL1);

        // assert that values written to the byte slice are reflected in the
        // typed value
        const VAL2: [u8; 8] = [0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF]; // different from VAL1
        lv.bytes_mut().copy_from_slice(&VAL2[..]);
        assert_eq!(*lv, VAL2);
    }

    #[test]
    fn test_new_aligned_sized() {
        // Test that a properly-aligned, properly-sized buffer works for new,
        // new_from_preifx, and new_from_suffix, and that new_from_prefix and
        // new_from_suffix return empty slices. Test that xxx_zeroed behaves
        // the same, and zeroes the memory.

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 8]>::default();
        // buf.buf should be aligned to 8, so this should always succeed
        test_new_helper(LayoutVerified::<_, u64>::new(&mut buf.buf[..]).unwrap());
        buf.buf = [0xFFu8; 8];
        test_new_helper(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).unwrap());
        {
            // in a block so that lv and suffix don't live too long
            buf.clear_buf();
            let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix(&mut buf.buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.clear_buf();
            let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix(&mut buf.buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(lv);
        }
    }

    #[test]
    fn test_new_unaligned_sized() {
        // Test that an unaligned, properly-sized buffer works for
        // new_unaligned, new_unaligned_from_prefix, and
        // new_unaligned_from_suffix, and that new_unaligned_from_prefix
        // new_unaligned_from_suffix return empty slices. Test that xxx_zeroed
        // behaves the same, and zeroes the memory.

        let mut buf = [0u8; 8];
        test_new_helper_unaligned(
            LayoutVerified::<_, [u8; 8]>::new_unaligned(&mut buf[..]).unwrap(),
        );
        buf = [0xFFu8; 8];
        test_new_helper_unaligned(
            LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf[..]).unwrap(),
        );
        {
            // in a block so that lv and suffix don't live too long
            buf = [0u8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 8];
            let (lv, suffix) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(
                &mut buf[..],
            ).unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0u8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 8];
            let (prefix, lv) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(
                &mut buf[..],
            ).unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(lv);
        }
    }

    #[test]
    fn test_new_oversized() {
        // Test that a properly-aligned, overly-sized buffer works for
        // new_from_prefix and new_from_suffix, and that they return the
        // remainder and prefix of the slice respectively. Test that xxx_zeroed
        // behaves the same, and zeroes the memory.

        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        {
            // in a block so that lv and suffix don't live too long
            // buf.buf should be aligned to 8, so this should always succeed
            let (lv, suffix) = LayoutVerified::<_, u64>::new_from_prefix(&mut buf.buf[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 16];
            // buf.buf should be aligned to 8, so this should always succeed
            let (lv, suffix) =
                LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).unwrap();
            // assert that the suffix wasn't zeroed
            assert_eq!(suffix, &[0xFFu8; 8]);
            test_new_helper(lv);
        }
        {
            buf.clear_buf();
            // buf.buf should be aligned to 8, so this should always succeed
            let (prefix, lv) = LayoutVerified::<_, u64>::new_from_suffix(&mut buf.buf[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper(lv);
        }
        {
            buf.buf = [0xFFu8; 16];
            // buf.buf should be aligned to 8, so this should always succeed
            let (prefix, lv) =
                LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).unwrap();
            // assert that the prefix wasn't zeroed
            assert_eq!(prefix, &[0xFFu8; 8]);
            test_new_helper(lv);
        }
    }

    #[test]
    fn test_new_unaligned_oversized() {
        // Test than an unaligned, overly-sized buffer works for
        // new_unaligned_from_prefix and new_unaligned_from_suffix, and that
        // they return the remainder and prefix of the slice respectively. Test
        // that xxx_zeroed behaves the same, and zeroes the memory.

        let mut buf = [0u8; 16];
        {
            // in a block so that lv and suffix don't live too long
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 16];
            let (lv, suffix) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(
                &mut buf[..],
            ).unwrap();
            // assert that the suffix wasn't zeroed
            assert_eq!(suffix, &[0xFF; 8]);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0u8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 16];
            let (prefix, lv) = LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(
                &mut buf[..],
            ).unwrap();
            // assert that the prefix wasn't zeroed
            assert_eq!(prefix, &[0xFF; 8]);
            test_new_helper_unaligned(lv);
        }
    }

    #[test]
    fn test_new_fail() {
        // fail because the buffer is too large

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 16]>::default();
        // buf.buf should be aligned to 8, so only the length check should fail
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.buf[..]).is_none());

        // fail because the buffer is too small

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 4]>::default();
        // buf.buf should be aligned to 8, so only the length check should fail
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&buf.buf[..]).is_none());
        assert!(
            LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf.buf[..])
                .is_none()
        );
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&buf.buf[..]).is_none());
        assert!(
            LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf.buf[..])
                .is_none()
        );

        // fail because the alignment is insufficient

        // a buffer with an alignment of 8
        let mut buf = AlignedBuffer::<u64, [u8; 12]>::default();
        // slicing from 4, we get a buffer with size 8 (so the length check
        // should succeed) but an alignment of only 4, which is insufficient
        assert!(LayoutVerified::<_, u64>::new(&buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_zeroed(&mut buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix(&buf.buf[4..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_prefix_zeroed(&mut buf.buf[4..]).is_none());
        // slicing from 4 should be unnecessary because new_from_suffix[_zeroed]
        // use the suffix of the slice
        assert!(LayoutVerified::<_, u64>::new_from_suffix(&buf.buf[..]).is_none());
        assert!(LayoutVerified::<_, u64>::new_from_suffix_zeroed(&mut buf.buf[..]).is_none());
    }

    #[test]
    fn test_display_debug() {
        let buf = AlignedBuffer::<u64, [u8; 8]>::default();
        let lv = LayoutVerified::<_, u64>::new(&buf.buf[..]).unwrap();
        assert_eq!(format!("{}", lv), "0");
        assert_eq!(format!("{:?}", lv), "LayoutVerified(0)");
    }
}