1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#![recursion_limit = "128"]

mod ext;
mod repr;

use proc_macro2::Span;
use syn::visit::{self, Visit};
use syn::{
    parse_quote, punctuated::Punctuated, token::Comma, Data, DataEnum, DataStruct, DeriveInput,
    Error, GenericParam, Ident, Lifetime, Type, TypePath,
};
use synstructure::{decl_derive, quote, Structure};

use ext::*;
use repr::*;

// TODO(joshlf): Some errors could be made better if we could add multiple lines
// of error output like this:
//
// error: unsupported representation
//   --> enum.rs:28:8
//    |
// 28 | #[repr(transparent)]
//    |
// help: required by the derive of FromBytes
//
// Instead, we have more verbose error messages like "unsupported representation
// for deriving FromBytes, AsBytes, or Unaligned on an enum"
//
// This will probably require Span::error
// (https://doc.rust-lang.org/nightly/proc_macro/struct.Span.html#method.error),
// which is currently unstable. Revisit this once it's stable.

decl_derive!([FromBytes] => derive_from_bytes);
decl_derive!([AsBytes] => derive_as_bytes);
decl_derive!([Unaligned] => derive_unaligned);

fn derive_from_bytes(s: Structure<'_>) -> proc_macro2::TokenStream {
    match &s.ast().data {
        Data::Struct(strct) => derive_from_bytes_struct(&s, strct),
        Data::Enum(enm) => derive_from_bytes_enum(&s, enm),
        Data::Union(_) => Error::new(Span::call_site(), "unsupported on unions").to_compile_error(),
    }
}

fn derive_as_bytes(s: Structure<'_>) -> proc_macro2::TokenStream {
    match &s.ast().data {
        Data::Struct(strct) => derive_as_bytes_struct(&s, strct),
        Data::Enum(enm) => derive_as_bytes_enum(&s, enm),
        Data::Union(_) => Error::new(Span::call_site(), "unsupported on unions").to_compile_error(),
    }
}

fn derive_unaligned(s: Structure<'_>) -> proc_macro2::TokenStream {
    match &s.ast().data {
        Data::Struct(strct) => derive_unaligned_struct(&s, strct),
        Data::Enum(enm) => derive_unaligned_enum(&s, enm),
        Data::Union(_) => Error::new(Span::call_site(), "unsupported on unions").to_compile_error(),
    }
}

// Unwrap a Result<_, Vec<Error>>, converting any Err value into a TokenStream
// and returning it.
macro_rules! try_or_print {
    ($e:expr) => {
        match $e {
            Ok(x) => x,
            Err(errors) => return print_all_errors(errors),
        }
    };
}

// A struct is FromBytes if:
// - all fields are FromBytes

fn derive_from_bytes_struct(s: &Structure<'_>, strct: &DataStruct) -> proc_macro2::TokenStream {
    impl_block(s.ast(), strct, "FromBytes", true, false)
}

// An enum is FromBytes if:
// - Every possible bit pattern must be valid, which means that every bit
//   pattern must correspond to a different enum variant. Thus, for an enum
//   whose layout takes up N bytes, there must be 2^N variants.
// - Since we must know N, only representations which guarantee the layout's
//   size are allowed. These are repr(uN) and repr(iN) (repr(C) implies an
//   implementation-defined size). size and isize technically guarantee the
//   layout's size, but would require us to know how large those are on the
//   target platform. This isn't terribly difficult - we could emit a const
//   expression that could call core::mem::size_of in order to determine the
//   size and check against the number of enum variants, but a) this would be
//   platform-specific and, b) even on Rust's smallest bit width platform (32),
//   this would require ~4 billion enum variants, which obviously isn't a thing.

fn derive_from_bytes_enum(s: &Structure<'_>, enm: &DataEnum) -> proc_macro2::TokenStream {
    if !enm.is_c_like() {
        return Error::new_spanned(s.ast(), "only C-like enums can implement FromBytes")
            .to_compile_error();
    }

    let reprs = try_or_print!(ENUM_FROM_BYTES_CFG.validate_reprs(s.ast()));

    let variants_required = match reprs.as_slice() {
        [EnumRepr::U8] | [EnumRepr::I8] => 1usize << 8,
        [EnumRepr::U16] | [EnumRepr::I16] => 1usize << 16,
        // validate_reprs has already validated that it's one of the preceding
        // patterns
        _ => unreachable!(),
    };
    if enm.variants.len() != variants_required {
        return Error::new_spanned(
            s.ast(),
            format!(
                "FromBytes only supported on {} enum with {} variants",
                reprs[0], variants_required
            ),
        )
        .to_compile_error();
    }

    impl_block(s.ast(), enm, "FromBytes", true, false)
}

#[rustfmt::skip]
const ENUM_FROM_BYTES_CFG: Config<EnumRepr> = {
    use EnumRepr::*;
    Config {
        allowed_combinations_message: r#"FromBytes requires repr of "u8", "u16", "i8", or "i16""#,
        derive_unaligned: false,
        allowed_combinations: &[
            &[U8],
            &[U16],
            &[I8],
            &[I16],
        ],
        disallowed_but_legal_combinations: &[
            &[C],
            &[U32],
            &[I32],
            &[U64],
            &[I64],
            &[Usize],
            &[Isize],
        ],
    }
};

// A struct is AsBytes if:
// - all fields are AsBytes
// - repr(C) or repr(transparent) and
//   - no padding (size of struct equals sum of size of field types)
// - repr(packed)

fn derive_as_bytes_struct(s: &Structure<'_>, strct: &DataStruct) -> proc_macro2::TokenStream {
    // TODO(joshlf): Support type parameters.
    if !s.ast().generics.params.is_empty() {
        return Error::new(Span::call_site(), "unsupported on types with type parameters")
            .to_compile_error();
    }

    let reprs = try_or_print!(STRUCT_AS_BYTES_CFG.validate_reprs(s.ast()));

    let require_size_check = match reprs.as_slice() {
        [StructRepr::C] | [StructRepr::Transparent] => true,
        [StructRepr::Packed] | [StructRepr::C, StructRepr::Packed] => false,
        // validate_reprs has already validated that it's one of the preceding
        // patterns
        _ => unreachable!(),
    };

    impl_block(s.ast(), strct, "AsBytes", true, require_size_check)
}

#[rustfmt::skip]
const STRUCT_AS_BYTES_CFG: Config<StructRepr> = {
    use StructRepr::*;
    Config {
        // NOTE: Since disallowed_but_legal_combinations is empty, this message
        // will never actually be emitted.
        allowed_combinations_message: r#"AsBytes requires repr of "C", "transparent", or "packed""#,
        derive_unaligned: false,
        allowed_combinations: &[
            &[C],
            &[Transparent],
            &[C, Packed],
            &[Packed],
        ],
        disallowed_but_legal_combinations: &[],
    }
};

// An enum is AsBytes if it is C-like and has a defined repr

fn derive_as_bytes_enum(s: &Structure<'_>, enm: &DataEnum) -> proc_macro2::TokenStream {
    if !enm.is_c_like() {
        return Error::new_spanned(s.ast(), "only C-like enums can implement AsBytes")
            .to_compile_error();
    }

    // We don't care what the repr is; we only care that it is one of the
    // allowed ones.
    try_or_print!(ENUM_AS_BYTES_CFG.validate_reprs(s.ast()));
    impl_block(s.ast(), enm, "AsBytes", false, false)
}

#[rustfmt::skip]
const ENUM_AS_BYTES_CFG: Config<EnumRepr> = {
    use EnumRepr::*;
    Config {
        // NOTE: Since disallowed_but_legal_combinations is empty, this message
        // will never actually be emitted.
        allowed_combinations_message: r#"AsBytes requires repr of "C", "u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", or "isize""#,
        derive_unaligned: false,
        allowed_combinations: &[
            &[C],
            &[U8],
            &[U16],
            &[I8],
            &[I16],
            &[U32],
            &[I32],
            &[U64],
            &[I64],
            &[Usize],
            &[Isize],
        ],
        disallowed_but_legal_combinations: &[],
    }
};

// A struct is Unaligned if:
// - repr(align) is no more than 1 and either
//   - repr(C) or repr(transparent) and
//     - all fields Unaligned
//   - repr(packed)

fn derive_unaligned_struct(s: &Structure<'_>, strct: &DataStruct) -> proc_macro2::TokenStream {
    let reprs = try_or_print!(STRUCT_UNALIGNED_CFG.validate_reprs(s.ast()));

    let require_trait_bound = match reprs.as_slice() {
        [StructRepr::C] | [StructRepr::Transparent] => true,
        [StructRepr::Packed] | [StructRepr::C, StructRepr::Packed] => false,
        // validate_reprs has already validated that it's one of the preceding
        // patterns
        _ => unreachable!(),
    };

    impl_block(s.ast(), strct, "Unaligned", require_trait_bound, false)
}

#[rustfmt::skip]
const STRUCT_UNALIGNED_CFG: Config<StructRepr> = {
    use StructRepr::*;
    Config {
        // NOTE: Since disallowed_but_legal_combinations is empty, this message
        // will never actually be emitted.
        allowed_combinations_message:
            r#"Unaligned requires either a) repr "C" or "transparent" with all fields implementing Unaligned or, b) repr "packed""#,
            derive_unaligned: true,
        allowed_combinations: &[
            &[C],
            &[Transparent],
            &[Packed],
            &[C, Packed],
        ],
        disallowed_but_legal_combinations: &[],
    }
};

// An enum is Unaligned if:
// - No repr(align(N > 1))
// - repr(u8) or repr(i8)

fn derive_unaligned_enum(s: &Structure<'_>, enm: &DataEnum) -> proc_macro2::TokenStream {
    if !enm.is_c_like() {
        return Error::new_spanned(s.ast(), "only C-like enums can implement Unaligned")
            .to_compile_error();
    }

    // The only valid reprs are u8 and i8, and optionally align(1). We don't
    // actually care what the reprs are so long as they satisfy that
    // requirement.
    try_or_print!(ENUM_UNALIGNED_CFG.validate_reprs(s.ast()));

    // NOTE: C-like enums cannot currently have type parameters, so this value
    // of true for require_trait_bounds doesn't really do anything. But it's
    // marginally more future-proof in case that restriction is lifted in the
    // future.
    impl_block(s.ast(), enm, "Unaligned", true, false)
}

#[rustfmt::skip]
const ENUM_UNALIGNED_CFG: Config<EnumRepr> = {
    use EnumRepr::*;
    Config {
        allowed_combinations_message:
            r#"Unaligned requires repr of "u8" or "i8", and no alignment (i.e., repr(align(N > 1)))"#,
        derive_unaligned: true,
        allowed_combinations: &[
            &[U8],
            &[I8],
        ],
        disallowed_but_legal_combinations: &[
            &[C],
            &[U16],
            &[U32],
            &[U64],
            &[Usize],
            &[I16],
            &[I32],
            &[I64],
            &[Isize],
        ],
    }
};

fn impl_block<D: DataExt>(
    input: &DeriveInput,
    data: &D,
    trait_name: &str,
    require_trait_bound: bool,
    require_size_check: bool,
) -> proc_macro2::TokenStream {
    // In this documentation, we will refer to this hypothetical struct:
    //
    //   #[derive(FromBytes)]
    //   struct Foo<T, I: Iterator>
    //   where
    //       T: Copy,
    //       I: Clone,
    //       I::Item: Clone,
    //   {
    //       a: u8,
    //       b: T,
    //       c: I::Item,
    //   }
    //
    // First, we extract the field types, which in this case are u8, T, and
    // I::Item. We use the names of the type parameters to split the field types
    // into two sets - a set of types which are based on the type parameters,
    // and a set of types which are not. First, we re-use the existing
    // parameters and where clauses, generating an impl block like:
    //
    //   impl<T, I: Iterator> FromBytes for Foo<T, I>
    //   where
    //       T: Copy,
    //       I: Clone,
    //       I::Item: Clone,
    //   {
    //   }
    //
    // Then, we use the list of types which are based on the type parameters to
    // generate new entries in the where clause:
    //
    //   impl<T, I: Iterator> FromBytes for Foo<T, I>
    //   where
    //       T: Copy,
    //       I: Clone,
    //       I::Item: Clone,
    //       T: FromBytes,
    //       I::Item: FromBytes,
    //   {
    //   }
    //
    // Finally, we use a different technique to generate the bounds for the types
    // which are not based on type parameters:
    //
    //
    //   fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {
    //       struct ImplementsFromBytes<F: ?Sized + FromBytes>(PhantomData<F>);
    //       let _: ImplementsFromBytes<u8>;
    //   }
    //
    // It would be easier to put all types in the where clause, but that won't
    // work until the trivial_bounds feature is stabilized (#48214).
    //
    // NOTE: It is standard practice to only emit bounds for the type parameters
    // themselves, not for field types based on those parameters (e.g., `T` vs
    // `T::Foo`). For a discussion of why this is standard practice, see
    // https://github.com/rust-lang/rust/issues/26925.
    //
    // The reason we diverge from this standard is that doing it that way for us
    // would be unsound. E.g., consider a type, `T` where `T: FromBytes` but
    // `T::Foo: !FromBytes`. It would not be sound for us to accept a type with
    // a `T::Foo` field as `FromBytes` simply because `T: FromBytes`.
    //
    // While there's no getting around this requirement for us, it does have
    // some pretty serious downsides that are worth calling out:
    //
    // 1. You lose the ability to have fields of generic type with reduced visibility.
    //
    //     #[derive(Unaligned)]
    //     #[repr(C)]
    //     pub struct Public<T>(Private<T>);
    //
    //     #[derive(Unaligned)]
    //     #[repr(C)]
    //     struct Private<T>(T);
    //
    //
    //     warning: private type `Private<T>` in public interface (error E0446)
    //      --> src/main.rs:6:10
    //       |
    //     6 | #[derive(Unaligned)]
    //       |          ^^^^^^^^^
    //       |
    //       = note: #[warn(private_in_public)] on by default
    //       = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
    //       = note: for more information, see issue #34537 <https://github.com/rust-lang/rust/issues/34537>
    //
    // 2. When lifetimes are involved, the trait solver ties itself in knots.
    //
    //     #[derive(Unaligned)]
    //     #[repr(C)]
    //     struct Dup<'a, 'b> {
    //         a: PhantomData<&'a u8>,
    //         b: PhantomData<&'b u8>,
    //     }
    //
    //
    //     error[E0283]: type annotations required: cannot resolve `core::marker::PhantomData<&'a u8>: zerocopy::Unaligned`
    //      --> src/main.rs:6:10
    //       |
    //     6 | #[derive(Unaligned)]
    //       |          ^^^^^^^^^
    //       |
    //       = note: required by `zerocopy::Unaligned`

    // A visitor which is used to walk a field's type and determine whether any
    // of its definition is based on the type or lifetime parameters on a type.
    struct FromTypeParamVisit<'a, 'b>(&'a Punctuated<GenericParam, Comma>, &'b mut bool);

    impl<'a, 'b> Visit<'a> for FromTypeParamVisit<'a, 'b> {
        fn visit_type_path(&mut self, i: &'a TypePath) {
            visit::visit_type_path(self, i);
            if self.0.iter().any(|param| {
                if let GenericParam::Type(param) = param {
                    i.path.segments.first().unwrap().ident == param.ident
                } else {
                    false
                }
            }) {
                *self.1 = true;
            }
        }

        fn visit_lifetime(&mut self, i: &'a Lifetime) {
            visit::visit_lifetime(self, i);
            if self.0.iter().any(|param| {
                if let GenericParam::Lifetime(param) = param {
                    param.lifetime.ident == i.ident
                } else {
                    false
                }
            }) {
                *self.1 = true;
            }
        }
    }

    // Whether this type is based on one of the type parameters. E.g., given the
    // type parameters `<T>`, `T`, `T::Foo`, and `(T::Foo, String)` are all
    // based on the type parameters, while `String` and `(String, Box<()>)` are
    // not.
    let is_from_type_param = |ty: &Type| {
        let mut ret = false;
        FromTypeParamVisit(&input.generics.params, &mut ret).visit_type(ty);
        ret
    };

    let trait_ident = Ident::new(trait_name, Span::call_site());

    let field_types = data.nested_types();
    let type_param_field_types = field_types.iter().filter(|ty| is_from_type_param(ty));
    let non_type_param_field_types = field_types.iter().filter(|ty| !is_from_type_param(ty));

    // Add a new set of where clause predicates of the form `T: Trait` for each
    // of the types of the struct's fields (but only the ones whose types are
    // based on one of the type parameters).
    let mut generics = input.generics.clone();
    let where_clause = generics.make_where_clause();
    if require_trait_bound {
        for ty in type_param_field_types {
            let bound = parse_quote!(#ty: zerocopy::#trait_ident);
            where_clause.predicates.push(bound);
        }
    }

    let type_ident = &input.ident;
    // The parameters with trait bounds, but without type defaults.
    let params = input.generics.params.clone().into_iter().map(|mut param| {
        match &mut param {
            GenericParam::Type(ty) => ty.default = None,
            GenericParam::Const(cnst) => cnst.default = None,
            GenericParam::Lifetime(_) => {}
        }
        quote!(#param)
    });
    // The identifiers of the parameters without trait bounds or type defaults.
    let param_idents = input.generics.params.iter().map(|param| match param {
        GenericParam::Type(ty) => {
            let ident = &ty.ident;
            quote!(#ident)
        }
        GenericParam::Lifetime(l) => quote!(#l),
        GenericParam::Const(cnst) => quote!(#cnst),
    });

    let trait_bound_body = if require_trait_bound {
        let implements_type_ident =
            Ident::new(format!("Implements{}", trait_ident).as_str(), Span::call_site());
        let implements_type_tokens = quote!(#implements_type_ident);
        let types = non_type_param_field_types.map(|ty| quote!(#implements_type_tokens<#ty>));
        quote!(
            // A type with a type parameter that must implement #trait_ident
            struct #implements_type_ident<F: ?Sized + zerocopy::#trait_ident>(::core::marker::PhantomData<F>);
            // For each field type, an instantiation that won't type check if
            // that type doesn't implement #trait_ident
            #(let _: #types;)*
        )
    } else {
        quote!()
    };

    let size_check_body = if require_size_check && !field_types.is_empty() {
        quote!(
            const _: () = {
                trait HasPadding<const HAS_PADDING: bool> {}
                fn assert_no_padding<T: HasPadding<false>>() {}

                const COMPOSITE_TYPE_SIZE: usize = ::core::mem::size_of::<#type_ident>();
                const SUM_FIELD_SIZES: usize = 0 #(+ ::core::mem::size_of::<#field_types>())*;
                const HAS_PADDING: bool = COMPOSITE_TYPE_SIZE > SUM_FIELD_SIZES;
                impl HasPadding<HAS_PADDING> for #type_ident {}
                let _ = assert_no_padding::<#type_ident>;
            };
        )
    } else {
        quote!()
    };

    quote! {
        unsafe impl < #(#params),* > zerocopy::#trait_ident for #type_ident < #(#param_idents),* > #where_clause {
            fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized {
                #trait_bound_body
                #size_check_body
            }
        }
    }
}

fn print_all_errors(errors: Vec<Error>) -> proc_macro2::TokenStream {
    errors.iter().map(Error::to_compile_error).collect()
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_config_repr_orderings() {
        // Validate that the repr lists in the various configs are in the
        // canonical order. If they aren't, then our algorithm to look up in
        // those lists won't work.

        // TODO(joshlf): Remove once the is_sorted method is stabilized
        // (issue #53485).
        fn is_sorted_and_deduped<T: Clone + Ord>(ts: &[T]) -> bool {
            let mut sorted = ts.to_vec();
            sorted.sort();
            sorted.dedup();
            ts == sorted.as_slice()
        }

        fn elements_are_sorted_and_deduped<T: Clone + Ord>(lists: &[&[T]]) -> bool {
            lists.iter().all(|list| is_sorted_and_deduped(*list))
        }

        fn config_is_sorted<T: KindRepr + Clone>(config: &Config<T>) -> bool {
            elements_are_sorted_and_deduped(&config.allowed_combinations)
                && elements_are_sorted_and_deduped(&config.disallowed_but_legal_combinations)
        }

        assert!(config_is_sorted(&STRUCT_UNALIGNED_CFG));
        assert!(config_is_sorted(&ENUM_FROM_BYTES_CFG));
        assert!(config_is_sorted(&ENUM_UNALIGNED_CFG));
    }

    #[test]
    fn test_config_repr_no_overlap() {
        // Validate that no set of reprs appears in both th allowed_combinations
        // and disallowed_but_legal_combinations lists.

        fn overlap<T: Eq>(a: &[T], b: &[T]) -> bool {
            a.iter().any(|elem| b.contains(elem))
        }

        fn config_overlaps<T: KindRepr + Eq>(config: &Config<T>) -> bool {
            overlap(config.allowed_combinations, config.disallowed_but_legal_combinations)
        }

        assert!(!config_overlaps(&STRUCT_UNALIGNED_CFG));
        assert!(!config_overlaps(&ENUM_FROM_BYTES_CFG));
        assert!(!config_overlaps(&ENUM_UNALIGNED_CFG));
    }
}