1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Copyright 2016 Nicholas Cameron.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Functions for reading binary data into Rust data structures. All functions
//! are zero-allocation.
//!
//! There are functions for reading a single value, an array of values, a single
//! null-terminated utf8 string (which should also work with ascii strings), and
//! an array of null-terminated strings terminated by another null byte.
//!
//! Functions preserve the lifetime of the underlying data. These functions are
//! memory safe, although this is in part based on the assumption that the
//! client only implements the unsafe trait `Pod` where safe to do so.
//!
//! Functions assert that the provided data is large enough. The string
//! functions check that strings are valid utf8. There is no checking that the
//! the privided input will produce a valid object (for example, an enum has a
//! valid discriminant). The user must assert this by implementing the trait
//! `Pod`.
//!
//! There are also unsafe versions of most functions which do not require the
//! return type to implement `Pod` and which do no checking.

#![no_std]

use core::mem;
use core::slice::from_raw_parts;
use core::str::{from_utf8, from_utf8_unchecked};

/// Reads a single `T` from `input`.
///
/// `input` must be at least as large as `T`.
pub fn read<'a, T: Pod>(input: &'a [u8]) -> &'a T {
    assert!(mem::size_of::<T>() <= input.len());

    unsafe {
        read_unsafe(input)
    }    
}

/// Read an array of `T`s from input.
///
/// `input` must contain an exact number of `T`s, there must be no extra bytes
/// after the last `T`. `T` may not be zero-sized.
pub fn read_array<'a, T: Pod>(input: &'a [u8]) -> &'a [T] {
    let t_size = mem::size_of::<T>();
    assert!(t_size > 0, "Can't read arrays of zero-sized types");
    assert!(input.len() % t_size == 0);

    unsafe {
        read_array_unsafe(input)
    }
}

/// Read a string from `input`. The string must be a null-termianted utf8 string.
/// Note that an ascii C string fulfils this requirement.
pub fn read_str<'a>(input: &'a [u8]) -> &'a str {
    from_utf8(read_str_bytes(input)).expect("Non-utf8 string")
}

/// Returns an iterator which will return a sequence of strings from `input`.
/// Each string must be a null-terminated utf8 string. The sequence of strings
/// is terminated either by a second null byte, or the end of input.
pub fn read_strs_to_null<'a>(input: &'a [u8]) -> StrReaderIterator<'a> {
    StrReaderIterator {
        data: input,
    }
}

/// Implementing this trait means that the concrete type is plain old data (POD).
/// Precisely, by implementing `Pod` the programmer asserts that it is safe to
/// read the type from binary slices provided to `read`, etc.
///
/// Some guidelines for when `Pod` may be implemented (note that whether `Pod`
/// should be implemented or not is a function of both the type and the input
/// data. I.e., just because a type is `Pod` in one context does not mean it
/// should be in another):
/// * primitive numeric types (`u8`, `i64`, `f32`, etc.) are fine,
/// * bools are fine, if the provided data ensures they may have only the values
///   `0` or `1` (note that this is a stricter requirement that C),
/// * structs containing only `Pod` data are fine,
/// * structs must be `repr(C)` or `repr(packed)`, if the former, the supplied
///   data must have the correct alignment,
/// * enums must have valid discriminants in the supplied data, this is probably
///   only feasible if they have a specified representation,
/// * there must not be invalid enum variants in the data,
/// * any kind of pointer is probably a bad idea. Theoretically one could make
///   raw pointers work.
pub unsafe trait Pod: Sized {}

unsafe impl Pod for u8 {}
unsafe impl Pod for u16 {}
unsafe impl Pod for u32 {}
unsafe impl Pod for u64 {}
unsafe impl Pod for i8 {}
unsafe impl Pod for i16 {}
unsafe impl Pod for i32 {}
unsafe impl Pod for i64 {}

/// Reads a `T` from `input` with no checks.
pub unsafe fn read_unsafe<'a, T: Sized>(input: &'a [u8]) -> &'a T {
    mem::transmute(input as *const [u8] as *const u8 as *const T)
}

/// Reads an array of `T`s from `input` with no checks.
pub unsafe fn read_array_unsafe<'a, T: Sized>(input: &'a [u8]) -> &'a [T] {
    let ptr = input.as_ptr() as *const T;
    from_raw_parts(ptr, input.len() / mem::size_of::<T>())
}

/// Reads a null-terminated string from `input` with no checks.
pub unsafe fn read_str_unsafe<'a>(input: &'a [u8]) -> &'a str {
    from_utf8_unchecked(read_str_bytes(input))
}

/// Iterates over `self.data`, yielding strings (null-terminated in `self.data`).
/// See `read_strs_to_null`.
#[derive(Clone, Debug)]
pub struct StrReaderIterator<'a> {
    data: &'a [u8]
}

impl<'a> Iterator for StrReaderIterator<'a> {
    type Item = &'a str;

    fn next(&mut self) -> Option<&'a str> {
        if self.data.len() == 0 || self.data[0] == 0 {
            return None;
        }

        let result = read_str(self.data);
        self.data = &self.data[result.len() + 1..];
        Some(result)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // Potentially no strings here at all. Maximum number is if the whole
        // data is filled with one char-long strings alternating with null bytes.
        (0, Some(self.data.len() / 2))
    }
}

// Helper function for read_str and read_str_unsafe.
// Finds the sub-slice of input which contains a string by searching for a null
// byte.
fn read_str_bytes<'a>(input: &'a [u8]) -> &'a [u8] {
    for (i, byte) in input.iter().enumerate() {
        if *byte == 0 {
            return &input[..i];
        }
    }

    panic!("No null byte in input");
}

#[cfg(test)]
mod test {
    use super::*;

    #[derive(Copy, Clone, PartialEq, Eq)]
    struct Zero;

    #[derive(Copy, Clone, PartialEq, Eq)]
    #[repr(packed)]
    struct Foo {
        a: u8,
    }

    #[derive(Copy, Clone, PartialEq, Eq)]
    #[repr(packed)]
    struct Bar {
        a: u32,
        b: u64,
        c: i8,
    }

    unsafe impl Pod for Zero {}
    unsafe impl Pod for Foo {}
    unsafe impl Pod for Bar {}

    // read

    #[test]
    fn test_read() {
        let a = &[];
        assert!(read::<Zero>(a) == &Zero);

        let a = &[42];
        assert!(read::<Foo>(a) == &Foo { a: 42 });

        let a = &[42, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8];
        assert!(read::<Bar>(a) == &Bar { a: 42, b: 0xf000425b_a262ff03, c: -2 });
    }

    #[test]
    #[should_panic]
    fn test_too_small() {
        let a = &[];
        read::<Foo>(a);
    }

    #[test]
    #[should_panic]
    fn test_too_small2() {
        let a = &[42, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0];
        read::<Bar>(a);
    }

    // read_array

    #[test]
    fn test_read_array() {
        let a = &[42];
        assert!(read_array::<Foo>(a) == &[Foo { a: 42 }]);
        let a = &[42, 43, 44, 45];
        assert!(read_array::<Foo>(a) == &[Foo { a: 42 }, Foo { a: 43 }, Foo { a: 44 }, Foo { a: 45 }]);

        let a = &[42, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8];
        assert!(read_array::<Bar>(a) == &[Bar { a: 42, b: 0xf000425b_a262ff03, c: -2 }]);
        let a = &[42, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8,
                  43, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8,
                  44, 0, 0, 0, 0x03, 0xff, 0x62, 0xa2, 0x5b, 0x42, 0x00, 0xf0, -2i8 as u8];
        assert!(read_array::<Bar>(a) == &[Bar { a: 42, b: 0xf000425b_a262ff03, c: -2 },
                                          Bar { a: 43, b: 0xf000425b_a262ff03, c: -2 },
                                          Bar { a: 44, b: 0xf000425b_a262ff03, c: -2 }]);
    }

    #[test]
    #[should_panic]
    fn test_array_zero_sized() {
        let a = &[0];
        read_array::<Zero>(a);
    }

    // read_str

    #[test]
    fn test_good_strs() {
        let a = &[0];
        assert_eq!(read_str(a), "");
        let a = &[0x61, 0];
        assert_eq!(read_str(a), "a");
        let a = &[0x61, 0x41, 0x7a, 0, 0x61];
        assert_eq!(read_str(a), "aAz");
    }

    #[test]
    #[should_panic]
    fn test_no_null() {
        let a = &[];
        read_str(a);
    }

    #[test]
    #[should_panic]
    fn test_no_null2() {
        let a = &[0x61, 0x41, 0x7a];
        read_str(a);
    }

    #[test]
    #[should_panic]
    fn test_not_unicode() {
        // TODO
        panic!();
    }

    // read_strs_to_null

    #[test]
    fn test_good_strs_to_null() {
        let a = &[0];
        assert_eq!(read_strs_to_null(a).count(), 0);
        let a = &[0, 0];
        assert_eq!(read_strs_to_null(a).count(), 0);
        let a = &[0, 1];
        assert_eq!(read_strs_to_null(a).count(), 0);

        let a = &[0x61, 0];
        let mut iter = read_strs_to_null(a);
        assert_eq!(iter.next(), Some("a"));
        assert_eq!(iter.next(), None);

        let a = &[0x61, 0, 0x61, 0x41, 0x7a, 0, 0x61, 0];
        let mut iter = read_strs_to_null(a);
        assert_eq!(iter.next(), Some("a"));
        assert_eq!(iter.next(), Some("aAz"));
        assert_eq!(iter.next(), Some("a"));
        assert_eq!(iter.next(), None);

        let a = &[0x61, 0, 0x61, 0x41, 0x7a, 0, 0x61, 0, 0, 0x61];
        let mut iter = read_strs_to_null(a);
        assert_eq!(iter.next(), Some("a"));
        assert_eq!(iter.next(), Some("aAz"));
        assert_eq!(iter.next(), Some("a"));
        assert_eq!(iter.next(), None);
    }

    #[test]
    #[should_panic]
    fn test_no_null_to_null() {
        let a = &[0x61];
        let mut iter = read_strs_to_null(a);
        iter.next();
    }
}