1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//! # Zernike polynomials

//! Computes the Zernike polynomials according to [Noll](https://www.osapublishing.org/josa/abstract.cfm?uri=josa-66-3-207) ordering:
//!
//! | j | 1 |  2 |  3 |  4 |  5 |  6 |  7 |  8 |  9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | ... |
//! | - | - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - |  - | --- |
//! | n | 0 |  1 |  1 |  2 |  2 |  2 |  3 |  3 |  3 |  3 |  4 |  4 |  4 |  4 |  4 |  5 |  5 |  5 |  5 |  5 |  5 | ... |
//! | m | 0 |  1 |  1 |  0 |  2 |  2 |  1 |  1 |  3 |  3 |  0 |  2 |  2 |  4 |  4 |  1 |  1 |  3 |  3 |  5 |  5 | ... |
//!
//! where n, m, and j are the radial order, the azimuthal order and the polynomial index, respectively

use rayon::prelude::*;

const PI: f64 = std::f64::consts::PI;
const E: f64 = std::f64::consts::E;

fn ln_gamma(f64: f64) -> f64 {
    // Auxiliary variable when evaluating the `gamma_ln` function
    let gamma_r: f64 = 10.900511;

    // Polynomial coefficients for approximating the `gamma_ln` function
    let gamma_dk: &[f64] = &[
        2.48574089138753565546e-5,
        1.05142378581721974210,
        -3.45687097222016235469,
        4.51227709466894823700,
        -2.98285225323576655721,
        1.05639711577126713077,
        -1.95428773191645869583e-1,
        1.70970543404441224307e-2,
        -5.71926117404305781283e-4,
        4.63399473359905636708e-6,
        -2.71994908488607703910e-9,
    ];

    let x: f64 = f64;

    if x < 0.5 {
        let s = gamma_dk
            .iter()
            .enumerate()
            .skip(1)
            .fold(gamma_dk[0], |s, t| s + *t.1 / ((t.0 as u64) as f64 - x));

        PI.ln()
            - (PI * x).sin().ln()
            - s.ln()
            - (2.0 * (E / PI).powf(0.5)).ln()
            - (0.5 - x) * ((0.5 - x + gamma_r) / E).ln()
    } else {
        let s = gamma_dk
            .iter()
            .enumerate()
            .skip(1)
            .fold(gamma_dk[0], |s, t| {
                s + *t.1 / (x + (t.0 as u64) as f64 - 1.0)
            });

        s.ln()
            + (2.0 * (E / PI).powf(0.5)).ln()
            + (x - 0.5) * ((x - 0.5 + gamma_r) / std::f64::consts::E).ln()
    }
}
fn gamma(x: f64) -> f64 {
    ln_gamma(x).exp()
}
/// Zernike radial function
fn radial(n: u32, m: u32, r: f64) -> f64 {
    (0..(n - m) / 2 + 1).fold(0f64, |a, k| {
        a + (-1f64).powf(k as f64) * gamma((n - k + 1) as f64) * r.powf((n - 2 * k) as f64)
            / (gamma((k + 1) as f64)
                * gamma(((n + m) / 2 - k + 1) as f64)
                * gamma(((n - m) / 2 - k + 1) as f64))
    })
}
/// Zernike azimuthal function
fn azimuthal(j: u32, m: u32, o: f64) -> f64 {
    let nkr = if m == 0 { 0f64 } else { 1f64 };
    2f64.powf(0.5 * nkr) * (m as f64 * o + nkr * ((-1f64).powf(j as f64) - 1f64) * PI * 0.25).cos()
}
/// Returns the Zernike polynomial (j,n,m) value at the polar coordinates (o,r)
pub fn zernike(j: u32, n: u32, m: u32, r: f64, o: f64) -> f64 {
    radial(n, m, r) * azimuthal(j, m, o)
}
/// Zernike mode on a regular grid n_xy X n_xy
pub fn mode(zj: u32, n: u32, m: u32, n_xy: usize) -> Vec<f64> {
    let d = 2f64 / (n_xy - 1) as f64;
    let h = ((n_xy - 1) / 2) as f64;
    (0..n_xy * n_xy)
        .into_par_iter()
        .map(|k| {
            let i = (k / n_xy) as f64 - h;
            let j = (k % n_xy) as f64 - h;
            let x = i * d;
            let y = j * d;
            let r = x.hypot(y);
            if r > 1f64 {
                0f64
            } else {
                let o = y.atan2(x);
                zernike(zj, n, m, r, o)
            }
        })
        .collect()
}
/// Zernike polynomial set
///
/// A complete set of `n_radial_order` Zernike modes on a regular grid n_xy X n_xy
pub fn mode_set(n_radial_order: u32, n_xy: usize) -> Vec<f64> {
    let (j, n, m) = jnm(n_radial_order);
    j.into_par_iter()
        .zip(n.into_par_iter().zip(m.into_par_iter()))
        .flat_map(|(j, (n, m))| mode(j, n, m, n_xy))
        .collect()
}
/// Orthonormal Zernike set
///
/// A complete set of `n_radial_order` orthonormalized Zernike modes on a regular grid n_xy X n_xy using the modified Gram-Schmidt algorithm
pub fn mgs_mode_set(n_radial_order: u32, n_xy: usize) -> Vec<f64> {
    let n = n_xy * n_xy;
    let nz = n_radial_order * (n_radial_order + 1) / 2;
    // v: Zernike modes
    let v: Vec<Vec<f64>> = mode_set(n_radial_order, n_xy)
        .chunks(n)
        .map(|x| x.to_vec())
        .collect();
    // u: orthonormal basis
    let mut u: Vec<Vec<f64>> = vec![0f64; n * nz as usize]
        .chunks(n)
        .map(|x| x.to_vec())
        .collect();
    // Returns the dot product: x.y
    let dot = |x: &[f64], y: &[f64]| x.iter().zip(y.iter()).fold(0f64, |a, (x, y)| a + x * y);
    // v1.v1
    let nrm = dot(&v[0], &v[0]).sqrt();
    // u1 = v1/v1.v1
    u[0].iter_mut().zip(v[0].iter()).for_each(|(u, v)| {
        *u = v / nrm;
    });
    (1..nz as usize).for_each(|i| {
        // ui = vi
        u[i].iter_mut().zip(v[i].iter()).for_each(|(u, v)| {
            *u = *v;
        });
        (0..i).for_each(|j| {
            // uj.ui/uj.uj
            let r = dot(&u[j], &u[i]) / dot(&u[j], &u[j]);
            // ui = ui - (uj.ui/uj.uj)vj
            let uj = u[j].clone();
            u[i].iter_mut().zip(uj.iter()).for_each(|(ui, uj)| {
                *ui -= r * *uj;
            });
        });
        // ui.ui
        let nrm = dot(&u[i], &u[i]).sqrt();
        // ui = ui/ui.ui
        u[i].iter_mut().for_each(|u| {
            *u /= nrm;
        });
    });
    u.iter().flat_map(|x| x.to_vec()).collect()
}
/// Orthonormal Zernike set
///
/// A complete set of `n_radial_order` orthonormalized Zernike modes on a regular grid n_xy X n_xy using the modified Gram-Schmidt algorithm, the modes are orthonormal on the `mask` defined with NaN values
pub fn mgs_mode_set_on_mask(n_radial_order: u32, n_xy: usize, mask: &[f64]) -> Vec<f64> {
    let n = n_xy * n_xy;
    let nz = n_radial_order * (n_radial_order + 1) / 2;
    // v: Zernike modes
    let v: Vec<Vec<f64>> = mode_set(n_radial_order, n_xy)
        .chunks(n)
        .map(|x| {
            x.iter()
                .zip(mask)
                .filter(|(_, m)| !m.is_nan())
                .map(|(x, _)| *x)
                .collect()
        })
        .collect();
    // u: orthonormal basis
    let mut u: Vec<Vec<f64>> = vec![0f64; n * nz as usize]
        .chunks(n)
        .map(|x| {
            x.iter()
                .zip(mask)
                .filter(|(_, m)| !m.is_nan())
                .map(|(x, _)| *x)
                .collect()
        })
        .collect();
    // Returns the dot product: x.y
    let dot = |x: &[f64], y: &[f64]| x.iter().zip(y.iter()).fold(0f64, |a, (x, y)| a + x * y);
    // v1.v1
    let nrm = dot(&v[0], &v[0]).sqrt();
    // u1 = v1/v1.v1
    u[0].iter_mut().zip(v[0].iter()).for_each(|(u, v)| {
        *u = v / nrm;
    });
    (1..nz as usize).for_each(|i| {
        // ui = vi
        u[i].iter_mut().zip(v[i].iter()).for_each(|(u, v)| {
            *u = *v;
        });
        (0..i).for_each(|j| {
            // uj.ui/uj.uj
            let r = dot(&u[j], &u[i]) / dot(&u[j], &u[j]);
            // ui = ui - (uj.ui/uj.uj)vj
            let uj = u[j].clone();
            u[i].iter_mut().zip(uj.iter()).for_each(|(ui, uj)| {
                *ui -= r * *uj;
            });
        });
        // ui.ui
        let nrm = dot(&u[i], &u[i]).sqrt();
        // ui = ui/ui.ui
        u[i].iter_mut().for_each(|u| {
            *u /= nrm;
        });
    });
    let mut v: Vec<Vec<f64>> = vec![vec![f64::NAN; n]; nz as usize];
    v.iter_mut().zip(u).for_each(|(v, u)| {
        v.iter_mut()
            .zip(mask)
            .filter(|(_, m)| !m.is_nan())
            .map(|(x, _)| x)
            .zip(u)
            .for_each(|(x, u)| {
                *x = u;
            })
    });
    v.iter().flat_map(|x| x.to_vec()).collect()
}
/// Surface decomposition
///
/// Returns the coefficients resulting of the projection of a surface on a complete set of `n_radial_order` orthonormalized Zernike modes defined on a regular grid n_xy X n_xy using the modified Gram-Schmidt algorithm, the surface is valid only on the `mask` defined with NaN values
pub fn projection_on_mask(
    surface: &[f64],
    n_radial_order: u32,
    n_xy: usize,
    mask: &[f64],
) -> Vec<f64> {
    let n = n_xy * n_xy;
    let nz = n_radial_order * (n_radial_order + 1) / 2;
    // v: Zernike modes
    let v: Vec<Vec<f64>> = mode_set(n_radial_order, n_xy)
        .chunks(n)
        .map(|x| {
            x.iter()
                .zip(mask)
                .filter(|(_, m)| !m.is_nan())
                .map(|(x, _)| *x)
                .collect()
        })
        .collect();
    // u: orthonormal basis
    let mut u: Vec<Vec<f64>> = vec![0f64; n * nz as usize]
        .chunks(n)
        .map(|x| {
            x.iter()
                .zip(mask)
                .filter(|(_, m)| !m.is_nan())
                .map(|(x, _)| *x)
                .collect()
        })
        .collect();
    // surface reduced to mask
    let surface: Vec<_> = surface
        .iter()
        .zip(mask)
        .filter(|(_, m)| !m.is_nan())
        .map(|(x, _)| *x)
        .collect();
    // Returns the dot product: x.y
    let dot = |x: &[f64], y: &[f64]| x.iter().zip(y.iter()).fold(0f64, |a, (x, y)| a + x * y);
    // v1.v1
    let nrm = dot(&v[0], &v[0]).sqrt();
    // u1 = v1/v1.v1
    u[0].iter_mut().zip(v[0].iter()).for_each(|(u, v)| {
        *u = v / nrm;
    });
    let mut c = vec![dot(&surface, &u[0])];
    c.extend((1..nz as usize).map(|i| {
        // ui = vi
        u[i].iter_mut().zip(v[i].iter()).for_each(|(u, v)| {
            *u = *v;
        });
        (0..i).for_each(|j| {
            // uj.ui/uj.uj
            let r = dot(&u[j], &u[i]) / dot(&u[j], &u[j]);
            // ui = ui - (uj.ui/uj.uj)vj
            let uj = u[j].clone();
            u[i].iter_mut().zip(uj.iter()).for_each(|(ui, uj)| {
                *ui -= r * *uj;
            });
        });
        // ui.ui
        let nrm = dot(&u[i], &u[i]).sqrt();
        dot(&surface, &u[i]) / nrm
    }));
    c
}
/// Surface decomposition
///
/// Returns the coefficients resulting of the projection of a surface on a complete set of `n_radial_order` orthonormalized Zernike modes defined on a regular grid n_xy X n_xy using the modified Gram-Schmidt algorithm
pub fn projection(surface: &[f64], n_radial_order: u32, n_xy: usize) -> Vec<f64> {
    let n = n_xy * n_xy;
    let nz = n_radial_order * (n_radial_order + 1) / 2;
    // v: Zernike modes
    let v: Vec<Vec<f64>> = mode_set(n_radial_order, n_xy)
        .chunks(n)
        .map(|x| x.to_vec())
        .collect();
    // u: orthonormal basis
    let mut u: Vec<Vec<f64>> = vec![0f64; n * nz as usize]
        .chunks(n)
        .map(|x| x.to_vec())
        .collect();
    // Returns the dot product: x.y
    let dot = |x: &[f64], y: &[f64]| x.iter().zip(y.iter()).fold(0f64, |a, (x, y)| a + x * y);
    // v1.v1
    let nrm = dot(&v[0], &v[0]).sqrt();
    // u1 = v1/v1.v1
    u[0].iter_mut().zip(v[0].iter()).for_each(|(u, v)| {
        *u = v / nrm;
    });
    let mut c = vec![dot(surface, &u[0])];
    c.extend((1..nz as usize).map(|i| {
        // ui = vi
        u[i].iter_mut().zip(v[i].iter()).for_each(|(u, v)| {
            *u = *v;
        });
        (0..i).for_each(|j| {
            // uj.ui/uj.uj
            let r = dot(&u[j], &u[i]) / dot(&u[j], &u[j]);
            // ui = ui - (uj.ui/uj.uj)vj
            let uj = u[j].clone();
            u[i].iter_mut().zip(uj.iter()).for_each(|(ui, uj)| {
                *ui -= r * *uj;
            });
        });
        // ui.ui
        let nrm = dot(&u[i], &u[i]).sqrt();
        dot(surface, &u[i]) / nrm
    }));
    c
}
/// Returns the Zernike indices `(j,n,m)` for the first `n_radial_order`s
pub fn jnm(n_radial_order: u32) -> (Vec<u32>, Vec<u32>, Vec<u32>) {
    let mut j: Vec<u32> = vec![];
    let mut n: Vec<u32> = vec![];
    let mut m: Vec<u32> = vec![];
    (1..=n_radial_order).into_iter().for_each(|nro| {
        (0..nro).step_by(2).for_each(|k| {
            let odd_even = (nro - 1) % 2;
            let j_last = 1 + j.last().or(Some(&0u32)).unwrap();
            if k == 0 && odd_even == 0 {
                j.push(j_last);
                n.push(nro - 1);
                m.push(0);
            } else {
                j.push(j_last);
                j.push(1 + j_last);
                n.push(nro - 1);
                n.push(nro - 1);
                m.push(odd_even + k);
                m.push(odd_even + k);
            }
        });
    });
    (j, n, m)
}