1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//! ECDSA provider for the YubiHSM 2 crate (supporting NIST P-256 and secp256k1).
//!
//! To enable secp256k1 support, build with the `secp256k1` cargo feature enabled.

use super::{algorithm::CurveAlgorithm, NistP256, NistP384};
use crate::{object, Client};
use ecdsa::{
    elliptic_curve::{
        consts::U32,
        generic_array::ArrayLength,
        point::PointCompression,
        sec1::{self, FromEncodedPoint, ToEncodedPoint},
        AffinePoint, CurveArithmetic, FieldBytesSize, PrimeCurve,
    },
    Signature, SignatureSize, VerifyingKey,
};
use signature::{digest::Digest, hazmat::PrehashSigner, DigestSigner, Error, KeypairRef};
use std::ops::Add;

#[cfg(feature = "secp256k1")]
use super::{secp256k1::RecoveryId, Secp256k1};

/// ECDSA signature provider for yubihsm-client
#[derive(signature::Signer)]
pub struct Signer<C>
where
    C: CurveAlgorithm + CurveArithmetic + PointCompression + PrimeCurve,
    FieldBytesSize<C>: sec1::ModulusSize,
{
    /// YubiHSM client.
    client: Client,

    /// ID of an ECDSA key to perform signatures with.
    signing_key_id: object::Id,

    /// Verifying key which corresponds to this signer.
    verifying_key: VerifyingKey<C>,

    /// Public key associated with the private key in the YubiHSM.
    // TODO(tarcieri): remove this in favor of `verifying_key` in the next breaking release
    public_key: sec1::EncodedPoint<C>,
}

impl<C> Signer<C>
where
    C: CurveAlgorithm + CurveArithmetic + PointCompression + PrimeCurve,
    AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
    FieldBytesSize<C>: sec1::ModulusSize,
{
    /// Create a new YubiHSM-backed ECDSA signer
    pub fn create(client: Client, signing_key_id: object::Id) -> Result<Self, Error> {
        let public_key = client
            .get_public_key(signing_key_id)?
            .ecdsa::<C>()
            .ok_or_else(Error::new)?;

        let verifying_key = VerifyingKey::<C>::from_encoded_point(&public_key)?;

        Ok(Self {
            client,
            signing_key_id,
            verifying_key,
            public_key,
        })
    }

    /// Get the public key for the YubiHSM-backed private key.
    pub fn public_key(&self) -> &sec1::EncodedPoint<C> {
        &self.public_key
    }
}

impl<C> Signer<C>
where
    C: CurveAlgorithm + CurveArithmetic + PointCompression + PrimeCurve,
    FieldBytesSize<C>: sec1::ModulusSize,
    SignatureSize<C>: ArrayLength<u8>,
    ecdsa::der::MaxSize<C>: ArrayLength<u8>,
    <FieldBytesSize<C> as Add>::Output: Add<ecdsa::der::MaxOverhead> + ArrayLength<u8>,
{
    fn sign_prehash_ecdsa(&self, prehash: &[u8]) -> Result<Signature<C>, Error> {
        self.client
            .sign_ecdsa_prehash_raw(self.signing_key_id, prehash)
            .map_err(Error::from_source)
            .and_then(|der| Signature::from_der(&der))
    }
}

impl<C> AsRef<VerifyingKey<C>> for Signer<C>
where
    C: CurveAlgorithm + CurveArithmetic + PointCompression + PrimeCurve,
    FieldBytesSize<C>: sec1::ModulusSize,
{
    fn as_ref(&self) -> &VerifyingKey<C> {
        &self.verifying_key
    }
}

impl<C> From<&Signer<C>> for sec1::EncodedPoint<C>
where
    Self: Clone,
    C: CurveAlgorithm + CurveArithmetic + PointCompression + PrimeCurve,
    AffinePoint<C>: FromEncodedPoint<C> + ToEncodedPoint<C>,
    FieldBytesSize<C>: sec1::ModulusSize,
{
    fn from(signer: &Signer<C>) -> sec1::EncodedPoint<C> {
        signer.public_key().clone()
    }
}

impl<C> KeypairRef for Signer<C>
where
    C: CurveAlgorithm + CurveArithmetic + PointCompression + PrimeCurve,
    FieldBytesSize<C>: sec1::ModulusSize,
    SignatureSize<C>: ArrayLength<u8>,
{
    type VerifyingKey = VerifyingKey<C>;
}

impl PrehashSigner<Signature<NistP256>> for Signer<NistP256> {
    /// Compute a fixed-size P-256 ECDSA signature of a digest output.
    fn sign_prehash(&self, prehash: &[u8]) -> Result<Signature<NistP256>, Error> {
        self.sign_prehash_ecdsa(prehash)
    }
}

impl<D> DigestSigner<D, Signature<NistP256>> for Signer<NistP256>
where
    D: Digest<OutputSize = U32> + Default,
{
    /// Compute a fixed-sized P-256 ECDSA signature of the given digest
    fn try_sign_digest(&self, digest: D) -> Result<Signature<NistP256>, Error> {
        self.sign_prehash(&digest.finalize())
    }
}

impl PrehashSigner<Signature<NistP384>> for Signer<NistP384> {
    /// Compute a fixed-size P-384 ECDSA signature of a digest output.
    fn sign_prehash(&self, prehash: &[u8]) -> Result<Signature<NistP384>, Error> {
        self.sign_prehash_ecdsa(prehash)
    }
}

impl<D> DigestSigner<D, Signature<NistP384>> for Signer<NistP384>
where
    D: Digest<OutputSize = U32> + Default,
{
    /// Compute a fixed-sized P-384 ECDSA signature of the given digest
    fn try_sign_digest(&self, digest: D) -> Result<Signature<NistP384>, Error> {
        self.sign_prehash(&digest.finalize())
    }
}

#[cfg(feature = "secp256k1")]
impl PrehashSigner<Signature<Secp256k1>> for Signer<Secp256k1> {
    fn sign_prehash(&self, prehash: &[u8]) -> Result<Signature<Secp256k1>, Error> {
        let signature = self.sign_prehash_ecdsa(prehash)?;
        // Low-S normalize per BIP 0062: Dealing with Malleability:
        // <https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki>
        Ok(signature.normalize_s().unwrap_or(signature))
    }
}

#[cfg(feature = "secp256k1")]
impl PrehashSigner<(Signature<Secp256k1>, RecoveryId)> for Signer<Secp256k1> {
    /// Compute a fixed-size secp256k1 ECDSA signature of a digest output along with the recovery
    /// ID.
    fn sign_prehash(&self, prehash: &[u8]) -> Result<(Signature<Secp256k1>, RecoveryId), Error> {
        let signature = self.sign_prehash(prehash)?;
        let recovery_id =
            RecoveryId::trial_recovery_from_prehash(&self.verifying_key, prehash, &signature)?;
        Ok((signature, recovery_id))
    }
}

#[cfg(feature = "secp256k1")]
impl<D> DigestSigner<D, Signature<Secp256k1>> for Signer<Secp256k1>
where
    D: Digest<OutputSize = U32> + Default,
{
    /// Compute a fixed-size secp256k1 ECDSA signature of the given digest
    fn try_sign_digest(&self, digest: D) -> Result<Signature<Secp256k1>, Error> {
        self.sign_prehash(&digest.finalize())
    }
}

#[cfg(feature = "secp256k1")]
impl<D> DigestSigner<D, (Signature<Secp256k1>, RecoveryId)> for Signer<Secp256k1>
where
    D: Digest<OutputSize = U32> + Default,
{
    /// Compute a fixed-size secp256k1 ECDSA signature of the given digest along with the recovery
    /// ID.
    fn try_sign_digest(&self, digest: D) -> Result<(Signature<Secp256k1>, RecoveryId), Error> {
        self.sign_prehash(&digest.finalize())
    }
}