1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
//! `bellperson` is a crate for building zk-SNARK circuits. It provides circuit
//! traits and and primitive structures, as well as basic gadget implementations
//! such as booleans and number abstractions.
//!
//! # Example circuit
//!
//! Say we want to write a circuit that proves we know the preimage to some hash
//! computed using SHA-256d (calling SHA-256 twice). The preimage must have a
//! fixed length known in advance (because the circuit parameters will depend on
//! it), but can otherwise have any value. We take the following strategy:
//!
//! - Witness each bit of the preimage.
//! - Compute `hash = SHA-256d(preimage)` inside the circuit.
//! - Expose `hash` as a public input using multiscalar packing.
//!
//! ```
//! use bellperson::{
//!     gadgets::{
//!         boolean::{AllocatedBit, Boolean},
//!         multipack,
//!         sha256::sha256,
//!     },
//!     groth16, Circuit, ConstraintSystem, SynthesisError,
//! };
//! use paired::{bls12_381::Bls12, Engine};
//! use rand::rngs::OsRng;
//! use sha2::{Digest, Sha256};
//!
//! /// Our own SHA-256d gadget. Input and output are in little-endian bit order.
//! fn sha256d<E: Engine, CS: ConstraintSystem<E>>(
//!     mut cs: CS,
//!     data: &[Boolean],
//! ) -> Result<Vec<Boolean>, SynthesisError> {
//!     // Flip endianness of each input byte
//!     let input: Vec<_> = data
//!         .chunks(8)
//!         .map(|c| c.iter().rev())
//!         .flatten()
//!         .cloned()
//!         .collect();
//!
//!     let mid = sha256(cs.namespace(|| "SHA-256(input)"), &input)?;
//!     let res = sha256(cs.namespace(|| "SHA-256(mid)"), &mid)?;
//!
//!     // Flip endianness of each output byte
//!     Ok(res
//!         .chunks(8)
//!         .map(|c| c.iter().rev())
//!         .flatten()
//!         .cloned()
//!         .collect())
//! }
//!
//! struct MyCircuit {
//!     /// The input to SHA-256d we are proving that we know. Set to `None` when we
//!     /// are verifying a proof (and do not have the witness data).
//!     preimage: Option<[u8; 80]>,
//! }
//!
//! impl<E: Engine> Circuit<E> for MyCircuit {
//!     fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
//!         // Compute the values for the bits of the preimage. If we are verifying a proof,
//!         // we still need to create the same constraints, so we return an equivalent-size
//!         // Vec of None (indicating that the value of each bit is unknown).
//!         let bit_values = if let Some(preimage) = self.preimage {
//!             preimage
//!                 .iter()
//!                 .map(|byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8))
//!                 .flatten()
//!                 .map(|b| Some(b))
//!                 .collect()
//!         } else {
//!             vec![None; 80 * 8]
//!         };
//!         assert_eq!(bit_values.len(), 80 * 8);
//!
//!         // Witness the bits of the preimage.
//!         let preimage_bits = bit_values
//!             .into_iter()
//!             .enumerate()
//!             // Allocate each bit.
//!             .map(|(i, b)| {
//!                 AllocatedBit::alloc(cs.namespace(|| format!("preimage bit {}", i)), b)
//!             })
//!             // Convert the AllocatedBits into Booleans (required for the sha256 gadget).
//!             .map(|b| b.map(Boolean::from))
//!             .collect::<Result<Vec<_>, _>>()?;
//!
//!         // Compute hash = SHA-256d(preimage).
//!         let hash = sha256d(cs.namespace(|| "SHA-256d(preimage)"), &preimage_bits)?;
//!
//!         // Expose the vector of 32 boolean variables as compact public inputs.
//!         multipack::pack_into_inputs(cs.namespace(|| "pack hash"), &hash)
//!     }
//! }
//!
//! // Create parameters for our circuit. In a production deployment these would
//! // be generated securely using a multiparty computation.
//! let params = {
//!     let c = MyCircuit { preimage: None };
//!     groth16::generate_random_parameters::<Bls12, _, _>(c, &mut OsRng).unwrap()
//! };
//!
//! // Prepare the verification key (for proof verification).
//! let pvk = groth16::prepare_verifying_key(&params.vk);
//!
//! // Pick a preimage and compute its hash.
//! let preimage = [42; 80];
//! let hash = Sha256::digest(&Sha256::digest(&preimage));
//!
//! // Create an instance of our circuit (with the preimage as a witness).
//! let c = MyCircuit {
//!     preimage: Some(preimage),
//! };
//!
//! // Create a Groth16 proof with our parameters.
//! let proof = groth16::create_random_proof(c, &params, &mut OsRng).unwrap();
//!
//! // Pack the hash as inputs for proof verification.
//! let hash_bits = multipack::bytes_to_bits_le(&hash);
//! let inputs = multipack::compute_multipacking::<Bls12>(&hash_bits);
//!
//! // Check the proof!
//! assert!(groth16::verify_proof(&pvk, &proof, &inputs).unwrap());
//! ```
//!
//! # Roadmap
//!
//! `bellperson` is being refactored into a generic proving library. Currently it
//! is pairing-specific, and different types of proving systems need to be
//! implemented as sub-modules. After the refactor, `bellperson` will be generic
//! using the [`ff`] and [`group`] crates, while specific proving systems will
//! be separate crates that pull in the dependencies they require.

// Catch documentation errors caused by code changes.
#![deny(intra_doc_link_resolution_failure)]

#[cfg(test)]
#[macro_use]
extern crate hex_literal;

pub mod domain;
pub mod gadgets;
pub mod gpu;
#[cfg(feature = "groth16")]
pub mod groth16;
pub mod multicore;
pub mod multiexp;

pub mod util_cs;

#[cfg(feature = "gpu")]
pub use gpu::GPU_NVIDIA_DEVICES;

use ff::{Field, ScalarEngine};

use ahash::AHashMap as HashMap;
use std::io;
use std::marker::PhantomData;
use std::ops::{Add, Sub};

const BELLMAN_VERSION: &'static str = env!("CARGO_PKG_VERSION");

/// Computations are expressed in terms of arithmetic circuits, in particular
/// rank-1 quadratic constraint systems. The `Circuit` trait represents a
/// circuit that can be synthesized. The `synthesize` method is called during
/// CRS generation and during proving.
pub trait Circuit<E: ScalarEngine> {
    /// Synthesize the circuit into a rank-1 quadratic constraint system.
    fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>;
}

/// Represents a variable in our constraint system.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Variable(Index);

impl Variable {
    /// This constructs a variable with an arbitrary index.
    /// Circuit implementations are not recommended to use this.
    pub fn new_unchecked(idx: Index) -> Variable {
        Variable(idx)
    }

    /// This returns the index underlying the variable.
    /// Circuit implementations are not recommended to use this.
    pub fn get_unchecked(&self) -> Index {
        self.0
    }
}

/// Represents the index of either an input variable or
/// auxiliary variable.
#[derive(Copy, Clone, PartialEq, Debug, Eq, Hash)]
pub enum Index {
    Input(usize),
    Aux(usize),
}

/// This represents a linear combination of some variables, with coefficients
/// in the scalar field of a pairing-friendly elliptic curve group.
#[derive(Clone)]
pub struct LinearCombination<E: ScalarEngine>(HashMap<Variable, E::Fr>);
impl<E: ScalarEngine> Default for LinearCombination<E> {
    fn default() -> Self {
        Self::zero()
    }
}

impl<E: ScalarEngine> LinearCombination<E> {
    pub fn zero() -> LinearCombination<E> {
        LinearCombination(HashMap::new())
    }

    pub fn iter(&self) -> impl Iterator<Item = (&Variable, &E::Fr)> + '_ {
        self.0.iter()
    }

    pub fn add_unsimplified(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
        self.0
            .entry(var)
            .or_insert(E::Fr::zero())
            .add_assign(&coeff);

        self
    }
}

impl<E: ScalarEngine> Add<(E::Fr, Variable)> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
        self.0
            .entry(var)
            .or_insert(E::Fr::zero())
            .add_assign(&coeff);

        self
    }
}

impl<E: ScalarEngine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    #[allow(clippy::suspicious_arithmetic_impl)]
    fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
        coeff.negate();

        self + (coeff, var)
    }
}

impl<E: ScalarEngine> Add<Variable> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(self, other: Variable) -> LinearCombination<E> {
        self + (E::Fr::one(), other)
    }
}

impl<E: ScalarEngine> Sub<Variable> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(self, other: Variable) -> LinearCombination<E> {
        self - (E::Fr::one(), other)
    }
}

impl<'a, E: ScalarEngine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
        for (var, val) in &other.0 {
            self.0.entry(*var).or_insert(E::Fr::zero()).add_assign(val);
        }

        self
    }
}

impl<'a, E: ScalarEngine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
        for (var, val) in &other.0 {
            self = self - (*val, *var);
        }

        self
    }
}

impl<'a, E: ScalarEngine> Add<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
        for s in &other.0 {
            let mut tmp = *s.1;
            tmp.mul_assign(&coeff);
            self = self + (tmp, *s.0);
        }

        self
    }
}

impl<'a, E: ScalarEngine> Sub<(E::Fr, &'a LinearCombination<E>)> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(mut self, (coeff, other): (E::Fr, &'a LinearCombination<E>)) -> LinearCombination<E> {
        for s in &other.0 {
            let mut tmp = *s.1;
            tmp.mul_assign(&coeff);
            self = self - (tmp, *s.0);
        }

        self
    }
}

/// This is an error that could occur during circuit synthesis contexts,
/// such as CRS generation, proving or verification.
#[derive(thiserror::Error, Debug)]
pub enum SynthesisError {
    /// During synthesis, we lacked knowledge of a variable assignment.
    #[error("an assignment for a variable could not be computed")]
    AssignmentMissing,
    /// During synthesis, we divided by zero.
    #[error("division by zero")]
    DivisionByZero,
    /// During synthesis, we constructed an unsatisfiable constraint system.
    #[error("unsatisfiable constraint system")]
    Unsatisfiable,
    /// During synthesis, our polynomials ended up being too high of degree
    #[error("polynomial degree is too large")]
    PolynomialDegreeTooLarge,
    /// During proof generation, we encountered an identity in the CRS
    #[error("encountered an identity element in the CRS")]
    UnexpectedIdentity,
    /// During proof generation, we encountered an I/O error with the CRS
    #[error("encountered an I/O error: {0}")]
    IoError(#[from] io::Error),
    /// During verification, our verifying key was malformed.
    #[error("malformed verifying key")]
    MalformedVerifyingKey,
    /// During CRS generation, we observed an unconstrained auxiliary variable
    #[error("auxiliary variable was unconstrained")]
    UnconstrainedVariable,
    /// During GPU multiexp/fft, some GPU related error happened
    #[error("encountered a GPU error: {0}")]
    GPUError(#[from] gpu::GPUError),
}

/// Represents a constraint system which can have new variables
/// allocated and constrains between them formed.
pub trait ConstraintSystem<E: ScalarEngine>: Sized + Send {
    /// Represents the type of the "root" of this constraint system
    /// so that nested namespaces can minimize indirection.
    type Root: ConstraintSystem<E>;

    fn new() -> Self {
        unimplemented!(
            "ConstraintSystem::new must be implemented for extensible types implementing ConstraintSystem"
        );
    }

    /// Return the "one" input variable
    fn one() -> Variable {
        Variable::new_unchecked(Index::Input(0))
    }

    /// Allocate a private variable in the constraint system. The provided function is used to
    /// determine the assignment of the variable. The given `annotation` function is invoked
    /// in testing contexts in order to derive a unique name for this variable in the current
    /// namespace.
    fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<E::Fr, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>;

    /// Allocate a public variable in the constraint system. The provided function is used to
    /// determine the assignment of the variable.
    fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<E::Fr, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>;

    /// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts
    /// in order to derive a unique name for the constraint in the current namespace.
    fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
    where
        A: FnOnce() -> AR,
        AR: Into<String>,
        LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
        LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
        LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>;

    /// Create a new (sub)namespace and enter into it. Not intended
    /// for downstream use; use `namespace` instead.
    fn push_namespace<NR, N>(&mut self, name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR;

    /// Exit out of the existing namespace. Not intended for
    /// downstream use; use `namespace` instead.
    fn pop_namespace(&mut self);

    /// Gets the "root" constraint system, bypassing the namespacing.
    /// Not intended for downstream use; use `namespace` instead.
    fn get_root(&mut self) -> &mut Self::Root;

    /// Begin a namespace for this constraint system.
    fn namespace<NR, N>(&mut self, name_fn: N) -> Namespace<'_, E, Self::Root>
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        self.get_root().push_namespace(name_fn);

        Namespace(self.get_root(), Default::default())
    }

    /// Most implementations of ConstraintSystem are not 'extensible': they won't implement a specialized
    /// version of `extend` and should therefore also keep the default implementation of `is_extensible`
    /// so callers which optionally make use of `extend` can know to avoid relying on it when unimplemented.
    fn is_extensible() -> bool {
        false
    }

    /// Extend concatenates thew  `other` constraint systems to the receiver, modifying the receiver, whose
    /// inputs, allocated variables, and constraints will precede those of the `other` constraint system.
    /// The primary use case for this is parallel synthesis of circuits which can be decomposed into
    /// entirely independent sub-circuits. Each can be synthesized in its own thread, then the
    /// original `ConstraintSystem` can be extended with each, in the same order they would have
    /// been synthesized sequentially.
    fn extend(&mut self, _other: Self) {
        unimplemented!(
            "ConstraintSystem::extend must be implemented for types implementing ConstraintSystem"
        );
    }
}

/// This is a "namespaced" constraint system which borrows a constraint system (pushing
/// a namespace context) and, when dropped, pops out of the namespace context.
pub struct Namespace<'a, E: ScalarEngine, CS: ConstraintSystem<E>>(&'a mut CS, SendMarker<E>);

struct SendMarker<E: ScalarEngine>(PhantomData<E>);

impl<E: ScalarEngine> Default for SendMarker<E> {
    fn default() -> Self {
        Self(PhantomData)
    }
}

// Safety: ScalarEngine is static and this is only a marker
unsafe impl<E: ScalarEngine> Send for SendMarker<E> {}

impl<'cs, E: ScalarEngine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Namespace<'cs, E, CS> {
    type Root = CS::Root;

    fn one() -> Variable {
        CS::one()
    }

    fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<E::Fr, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        self.0.alloc(annotation, f)
    }

    fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<E::Fr, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        self.0.alloc_input(annotation, f)
    }

    fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
    where
        A: FnOnce() -> AR,
        AR: Into<String>,
        LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
        LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
        LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
    {
        self.0.enforce(annotation, a, b, c)
    }

    // Downstream users who use `namespace` will never interact with these
    // functions and they will never be invoked because the namespace is
    // never a root constraint system.

    fn push_namespace<NR, N>(&mut self, _: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        panic!("only the root's push_namespace should be called");
    }

    fn pop_namespace(&mut self) {
        panic!("only the root's pop_namespace should be called");
    }

    fn get_root(&mut self) -> &mut Self::Root {
        self.0.get_root()
    }
}

impl<'a, E: ScalarEngine, CS: ConstraintSystem<E>> Drop for Namespace<'a, E, CS> {
    fn drop(&mut self) {
        self.get_root().pop_namespace()
    }
}

/// Convenience implementation of ConstraintSystem<E> for mutable references to
/// constraint systems.
impl<'cs, E: ScalarEngine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs mut CS {
    type Root = CS::Root;

    fn one() -> Variable {
        CS::one()
    }

    fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<E::Fr, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        (**self).alloc(annotation, f)
    }

    fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<E::Fr, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        (**self).alloc_input(annotation, f)
    }

    fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
    where
        A: FnOnce() -> AR,
        AR: Into<String>,
        LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
        LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
        LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
    {
        (**self).enforce(annotation, a, b, c)
    }

    fn push_namespace<NR, N>(&mut self, name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        (**self).push_namespace(name_fn)
    }

    fn pop_namespace(&mut self) {
        (**self).pop_namespace()
    }

    fn get_root(&mut self) -> &mut Self::Root {
        (**self).get_root()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn test_add_simplify() {
        use paired::bls12_381::Bls12;

        let n = 5;

        let mut lc = LinearCombination::<Bls12>::zero();

        let mut expected_sums = vec![<Bls12 as ScalarEngine>::Fr::zero(); n];
        let mut total_additions = 0;
        for i in 0..n {
            for _ in 0..i + 1 {
                let coeff = <Bls12 as ScalarEngine>::Fr::one();
                lc = lc + (coeff, Variable::new_unchecked(Index::Aux(i)));
                let mut tmp = expected_sums[i];
                tmp.add_assign(&coeff);
                expected_sums[i] = tmp;
                total_additions += 1;
            }
        }

        // There are only as many terms as distinct variable Indexes — not one per addition operation.
        assert_eq!(n, lc.0.len());
        assert!(lc.0.len() != total_additions);

        // Each variable has the expected coefficient, the sume of those added by its Index.
        lc.0.iter().for_each(|(var, coeff)| match var.0 {
            Index::Aux(i) => assert_eq!(expected_sums[i], *coeff),
            _ => panic!("unexpected variable type"),
        });
    }
}