1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
//! The point of this library. This module contains the core [`Tokens`] trait, which adds
//! various convenience methods on top of an [`Iterator`] based interface aimed at making
//! it easy to parse things.
//!
//! The [`IntoTokens`] trait is also provided, and can be implemented for types that can be
//! converted into something implementing the [`Tokens`] trait (for example `&str` and `&[T]`).
mod many;
mod many_err;
mod sep_by;
mod sep_by_all;
mod sep_by_all_err;
mod sep_by_err;
mod slice;
mod take;
mod take_while;

use core::borrow::Borrow;
use core::ops::Deref;
use core::str::FromStr;

// Re-export the structs handed back from token fns:
pub use many::Many;
pub use many_err::ManyErr;
pub use sep_by::SepBy;
pub use sep_by_all::SepByAll;
pub use sep_by_all_err::SepByAllErr;
pub use sep_by_err::SepByErr;
pub use slice::Slice;
pub use take::Take;
pub use take_while::TakeWhile;

use crate::types::{WithContext, WithContextMut};

/// The tokens trait is an extension of the [`Iterator`] trait, and adds a bunch of useful methods
/// for parsing tokens from the underlying iterable type.
///
/// Implementations don't need to directly implement [`Iterator`]; instead there exists
/// [`Tokens::as_iter()`] and [`Tokens::into_iter()`] methods to return an iterator that is based
/// on the methods implemented here and keeps iterator methods in a separate namespace.
pub trait Tokens: Sized {
    /// The item returned from [`Tokens::next()`].
    type Item;

    /// An object which can be used to reset the token stream
    /// to some position.
    type Location: TokenLocation + PartialEq + core::fmt::Debug + Clone;

    /// Return the next token. This is also the basis of the [`Iterator`] implementation
    /// that's returned when you call [`Tokens::as_iter()`]. By implementing it here, we can keep
    /// all of the methods provided by [`Iterator`] in a separate "namespace" to avoid confusion
    /// and potential name collisions.
    ///
    /// # Example
    ///
    /// ```rust
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "abc".into_tokens();
    ///
    /// assert_eq!(s.next(), Some('a'));
    /// assert_eq!(s.next(), Some('b'));
    /// assert_eq!(s.next(), Some('c'));
    /// assert_eq!(s.next(), None);
    /// ```
    fn next(&mut self) -> Option<Self::Item>;

    /// Return a "location" pointer. This can be passed to [`Tokens::set_location`]
    /// to set the tokens location back to the state at the time it was handed out.
    /// If the [`crate::TokenLocation`] trait is in scope, you can also call the
    /// [`crate::TokenLocation::offset()`] method on it to obtain the current offset.
    ///
    /// # Example
    ///
    /// ```rust
    /// use yap::{ Tokens, IntoTokens, TokenLocation };
    ///
    /// let mut s = "abcde".into_tokens();
    ///
    /// let location = s.location();
    /// assert_eq!(s.next().unwrap(), 'a');
    /// assert_eq!(s.location().offset(), 1);
    /// assert_eq!(s.next().unwrap(), 'b');
    /// assert_eq!(s.location().offset(), 2);
    ///
    /// s.set_location(location);
    ///
    /// assert_eq!(s.next().unwrap(), 'a');
    /// assert_eq!(s.location().offset(), 1);
    /// assert_eq!(s.next().unwrap(), 'b');
    /// assert_eq!(s.location().offset(), 2);
    /// ```
    fn location(&self) -> Self::Location;

    /// Set the tokens to the location provided. See [`Tokens::location`].
    fn set_location(&mut self, location: Self::Location);

    /// Return true if the current cursor location matches the location given, or false
    /// otherwise.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "abc".into_tokens();
    /// let location = s.location();
    /// assert_eq!(s.is_at_location(&location), true);
    /// s.next();
    /// assert_eq!(s.is_at_location(&location), false);
    /// s.set_location(location);
    /// assert_eq!(s.is_at_location(&location), true);
    /// ```
    fn is_at_location(&self, location: &Self::Location) -> bool;

    /// Return an iterator over our tokens. The [`Tokens`] trait already mirrors the [`Iterator`]
    /// interface by providing [`Tokens::Item`] and [`Tokens::next()`], but we keep the [`Iterator`]
    /// separate to avoid collisions, and because some iterator methods don't consume tokens as you
    /// might expect, and so must be used with care when parsing input.
    fn as_iter(&'_ mut self) -> TokensAsIter<'_, Self> {
        TokensAsIter { tokens: self }
    }

    /// Like [`Tokens::as_iter()`], except it consumes `self`, which can be useful in some situations.
    fn into_iter(self) -> TokensIntoIter<Self> {
        TokensIntoIter { tokens: self }
    }

    /// Attempt to parse the remaining tokens into the first `Out` generic using [`str::parse()`].
    /// The second generic type may be used to buffer tokens, and can be any type that implements
    /// `FromIterator<Self::Item> + Deref<Target = str>`.
    ///
    /// If the parsing fails, then no tokens are consumed.
    ///
    /// As an optimisation, implementations may choose not to use the provided buffer type if they have a
    /// suitable internal buffer of their own already. This is the case for [`crate::types::StrTokens`].
    ///
    /// This is mostly expected to be used in conjunction with [`Tokens::take`] and [`Tokens::take_while`],
    /// which themselves return the matching [`Tokens`].
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut tokens = "123abc456".into_tokens();
    ///
    /// let n = tokens.take(3).parse::<u8, String>().unwrap();
    /// assert_eq!(n, 123);
    ///
    /// let s = tokens.take_while(|t| t.is_alphabetic()).parse::<String, String>().unwrap();
    /// assert_eq!(s, "abc".to_string());
    ///
    /// // This will fail to parse; the number is out of bounds. Failure will consume
    /// // no tokens.
    /// assert!(tokens.parse::<u8, String>().is_err());
    ///
    /// // This will work; the number can fit into a u16:
    /// let n2 = tokens.parse::<u16, String>().unwrap();
    /// assert_eq!(n2, 456);
    /// ```
    fn parse<Out, Buf>(&mut self) -> Result<Out, <Out as FromStr>::Err>
    where
        Out: FromStr,
        Buf: FromIterator<Self::Item> + Deref<Target = str>,
    {
        self.optional_err(|toks| toks.collect::<Buf>().parse::<Out>())
    }

    /// This is called when `tokens.slice(..).parse()` is called, and exists so that `Tokens`
    /// impls have the chance to override/optimise this behaviour.
    ///
    /// This should never alter the location of the underlying tokens.
    #[doc(hidden)]
    fn parse_slice<Out, Buf>(
        &mut self,
        from: Self::Location,
        to: Self::Location,
    ) -> Result<Out, <Out as FromStr>::Err>
    where
        Out: FromStr,
        Buf: FromIterator<Self::Item> + Deref<Target = str>,
    {
        self.slice(from, to).collect::<Buf>().parse::<Out>()
    }

    /// This is called when `tokens.take_while(..).parse()` is called, and exists so that `Tokens`
    /// impls have the chance to override/optimise this behaviour.
    ///
    /// This should consume tokens on success, and consume nothing on failure.
    #[doc(hidden)]
    fn parse_take_while<Out, Buf, F>(&mut self, take_while: F) -> Result<Out, <Out as FromStr>::Err>
    where
        Out: FromStr,
        Buf: FromIterator<Self::Item> + Deref<Target = str>,
        F: FnMut(&Self::Item) -> bool,
    {
        self.optional_err(|toks| toks.take_while(take_while).collect::<Buf>().parse::<Out>())
    }

    /// This is called when `tokens.take(..).parse()` is called, and exists so that `Tokens`
    /// impls have the chance to override/optimise this behaviour.
    ///
    /// This should consume tokens on success, and consume nothing on failure.
    #[doc(hidden)]
    fn parse_take<Out, Buf>(&mut self, n: usize) -> Result<Out, <Out as FromStr>::Err>
    where
        Out: FromStr,
        Buf: FromIterator<Self::Item> + Deref<Target = str>,
    {
        self.optional_err(|toks| toks.take(n).collect::<Buf>().parse::<Out>())
    }

    /// Attach some context to your tokens. The returned struct, [`WithContext`], also implements
    /// [`Tokens`], and so has can be used in much the same way. Since this consumes your tokens, it's
    /// better suited to permanent context that you'd like throughout the parsing.
    ///
    /// See [`Tokens::with_context_mut`] for a version that's easier to attach temporary context with.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens, types::WithContext };
    ///
    /// fn skip_digits(toks: &mut WithContext<impl Tokens<Item=char>, usize>) {
    ///     let n_skipped = toks.skip_while(|c| c.is_digit(10));
    ///     *toks.context_mut() += n_skipped;
    /// }
    ///
    /// let mut tokens = "123abc456".into_tokens().with_context(0usize);
    ///
    /// skip_digits(&mut tokens);
    /// tokens.skip_while(|c| c.is_alphabetic());
    /// skip_digits(&mut tokens);
    ///
    /// assert_eq!(*tokens.context(), 6);
    /// ```
    fn with_context<C>(self, context: C) -> WithContext<Self, C> {
        WithContext::new(self, context)
    }

    /// Unlike [`Tokens::with_context`], which consumes the tokens, this borrows them mutably, allowing it to
    /// be used when you only have a mutable reference to tokens (which is a common function signature to use),
    /// and making it better suited to attaching temporary contexts.
    ///
    /// Be aware that if you attach context in a function called recursively, the type checker may shout at you
    /// for constructing a type like `WithContextMut<WithContextMut<WithContextMut<..>>>`. In these cases, you
    /// can "break the cycle" by removing the original `WithContextMut` by using
    /// [`crate::types::WithContextMut::into_parts()`] before wrapping the tokens in a new context for the recursive
    /// call.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// fn count_digit_comma_calls(toks: &mut impl Tokens<Item=char>) -> (u8, u8) {
    ///     let mut counts = (0u8, 0u8);
    ///     toks.with_context_mut(&mut counts).sep_by(
    ///         |t| {
    ///             t.context_mut().0 += 1;
    ///             let n_skipped = t.skip_while(|c| c.is_digit(10));
    ///             if n_skipped == 0 { None } else { Some(()) }
    ///         },
    ///         |t| {
    ///             t.context_mut().1 += 1;
    ///             t.token(',')
    ///         }
    ///     ).consume();
    ///     counts
    /// }
    ///
    /// let n: usize = 0;
    /// let mut tokens = "123,4,56,1,34,1".into_tokens();
    ///
    /// let (digits, seps) = count_digit_comma_calls(&mut tokens);
    ///
    /// assert_eq!(tokens.remaining().len(), 0);
    /// // digits parsed 6 times:
    /// assert_eq!(digits, 6);
    /// // Attempted to parse seps 6 times; failure on last ends it:
    /// assert_eq!(seps, 6);
    /// ```
    fn with_context_mut<C>(&mut self, context: C) -> WithContextMut<&mut Self, C> {
        WithContextMut::new(self, context)
    }

    /// Return a slice of tokens starting at the `to` location provided and ending just prior to
    /// the `from` location provided (ie equivalent to the range `to..from`).
    ///
    /// The slice returned from implements [`Tokens`], so you can use the full range
    /// of parsing functions on it.
    ///
    /// **Note:** the slice returned from this prevents the original tokens from being used until
    /// it's dropped, and resets the original tokens to their current location on `Drop`. if you
    /// [`core::mem::forget`] it, the original token location will equal whatever the slice location
    /// was when it was forgotten.
    ///
    /// # Example
    ///
    /// ```rust
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "abcdefghijklmnop".into_tokens();
    ///
    /// (0..5).for_each(|_| { s.next(); });
    /// let from = s.location();
    /// (0..5).for_each(|_| { s.next(); });
    /// let to = s.location();
    ///
    /// assert_eq!(s.next(), Some('k'));
    /// assert_eq!(s.next(), Some('l'));
    ///
    /// // Iterating the from..to range given:
    /// let vals: String = s.slice(from.clone(), to.clone()).collect();
    /// assert_eq!(&*vals, "fghij");
    ///
    /// // After the above is dropped, we can continue
    /// // from where we left off:
    /// assert_eq!(s.next(), Some('m'));
    /// assert_eq!(s.next(), Some('n'));
    ///
    /// // We can iterate this range again as we please:
    /// let vals: String = s.slice(from, to).collect();
    /// assert_eq!(&*vals, "fghij");
    ///
    /// // And the original remains unaffected..
    /// assert_eq!(s.next(), Some('o'));
    /// assert_eq!(s.next(), Some('p'));
    /// ```
    fn slice(&'_ mut self, from: Self::Location, to: Self::Location) -> Slice<'_, Self> {
        Slice::new(self, self.location(), from, to)
    }

    /// Return the current offset into the tokens that we've parsed up to so far.
    /// The exact meaning of this can vary by implementation; when parsing slices, it
    /// is index of the slice item we've consumed up to, and when
    /// parsing `&str`'s it is the number of bytes (not characters) consumed so far.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "abc".into_tokens();
    /// assert_eq!(s.offset(), 0);
    /// s.next();
    /// assert_eq!(s.offset(), 1);
    /// s.next();
    /// assert_eq!(s.offset(), 2);
    /// ```
    fn offset(&self) -> usize {
        self.location().offset()
    }

    /// Return the next item in the input without consuming it.
    ///
    /// Prefer this to using the `peekable` iterator method, which consumes
    /// the tokens, and internally keeps hold of the peeked state itself.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "abc".into_tokens();
    /// assert_eq!(s.peek(), Some('a'));
    /// assert_eq!(s.peek(), Some('a'));
    /// ```
    fn peek(&mut self) -> Option<Self::Item> {
        let location = self.location();
        let item = self.next();
        self.set_location(location);
        item
    }

    /// Expect a specific token to be next. If the token is not found, the iterator is not
    /// advanced.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "abc".into_tokens();
    /// assert_eq!(s.token(&'a'), true);
    /// assert_eq!(s.token(&'b'), true);
    /// assert_eq!(s.token('z'), false);
    /// assert_eq!(s.token('y'), false);
    /// assert_eq!(s.token('c'), true);
    /// ```
    fn token<I>(&mut self, t: I) -> bool
    where
        Self::Item: PartialEq,
        I: Borrow<Self::Item>,
    {
        let location = self.location();
        match self.next() {
            Some(item) if &item == t.borrow() => true,
            _ => {
                self.set_location(location);
                false
            }
        }
    }

    /// Expect a specific set of tokens to be next. If the tokens are not found, the iterator is not
    /// advanced. Anything that implements `IntoIterator` with an `Item` type that can be borrowed to
    /// produce `&Item` can be provided as an input to this.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "abcdef".into_tokens();
    ///
    /// assert_eq!(s.tokens("abc".chars()), true);
    /// assert_eq!(s.remaining(), "def");
    ///
    /// assert_eq!(s.tokens("de".chars()), true);
    /// assert_eq!(s.remaining(), "f");
    /// ```
    fn tokens<It>(&mut self, ts: It) -> bool
    where
        Self::Item: PartialEq,
        It: IntoIterator,
        It::Item: Borrow<Self::Item>,
    {
        let location = self.location();

        // We don't `.zip()` here because we need to spot and handle the
        // case where we run out of self tokens before `ts` runs out, and reset
        // /return false in that situation.
        let ts_iter = ts.into_iter();
        for expected in ts_iter {
            match self.next() {
                Some(actual) => {
                    // We have a token; does it equal the expected one?
                    if &actual != expected.borrow() {
                        self.set_location(location);
                        return false;
                    }
                }
                None => {
                    // We ran out of tokens in self, so no match.
                    self.set_location(location);
                    return false;
                }
            }
        }
        true
    }

    /// Return the first token that matches the tokens provided, or None if none of them
    /// match.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "abcdef".into_tokens();
    ///
    /// assert_eq!(s.one_of_tokens("abc".chars()), Some('a'));
    /// assert_eq!(s.one_of_tokens("abc".chars()), Some('b'));
    /// assert_eq!(s.one_of_tokens("abc".chars()), Some('c'));
    /// assert_eq!(s.one_of_tokens("abc".chars()), None);
    /// assert_eq!(s.remaining(), "def");
    /// ```
    fn one_of_tokens<It>(&mut self, ts: It) -> Option<Self::Item>
    where
        Self::Item: PartialEq,
        It: IntoIterator,
        It::Item: Borrow<Self::Item>,
    {
        for expected in ts.into_iter() {
            let location = self.location();
            match self.next() {
                Some(token) if &token == expected.borrow() => return Some(token),
                _ => {
                    self.set_location(location);
                }
            }
        }
        None
    }

    /// Return a [`Tokens`] impl that will take the next `n` tokens from the input (ending early
    /// if the input runs early).
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "12345abc".into_tokens();
    /// let digits: String = s.take(3).collect();
    /// assert_eq!(&*digits, "123");
    /// assert_eq!(s.remaining(), "45abc");
    /// ```
    fn take(&'_ mut self, n: usize) -> Take<'_, Self> {
        Take::new(self, n)
    }

    /// Return a [`Tokens`] impl that will consume tokens until the provided function returns false.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "12345abc".into_tokens();
    /// let digits: String = s.take_while(|c| c.is_numeric()).collect();
    /// assert_eq!(&*digits, "12345");
    /// assert_eq!(s.remaining(), "abc");
    /// ```
    ///
    /// This exists primarily because [`Iterator::take_while()`] will consume the first token that
    /// does not match the predicate, which is often not what we'd want. The above example using
    /// [`Iterator::take_while()`] would look like:
    ///
    /// ```rust
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "12345abc".into_tokens();
    /// let digits: String = s.as_iter().take_while(|c| c.is_numeric()).collect();
    /// assert_eq!(&*digits, "12345");
    ///
    /// // Note that `Iterator::take_while` consumed the "a" in order to test it,
    /// // whereas `Tokens::take_while` did not:
    /// assert_eq!(s.remaining(), "bc");
    /// ```
    fn take_while<F>(&'_ mut self, f: F) -> TakeWhile<'_, Self, F>
    where
        F: FnMut(&Self::Item) -> bool,
    {
        TakeWhile::new(self, f)
    }

    /// Iterate over the tokens until the provided function returns false on one. Only consume the tokens
    /// that the function returned true for, returning the number of tokens that were consumed/skipped.
    /// Equivalent to `toks.take_while(f).count()`.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "12345abc".into_tokens();
    /// let n_skipped = s.skip_while(|c| c.is_numeric());
    ///
    /// assert_eq!(n_skipped, 5);
    /// assert_eq!(s.remaining(), "abc");
    /// ```
    fn skip_while<F>(&mut self, f: F) -> usize
    where
        F: FnMut(&Self::Item) -> bool,
    {
        self.take_while(f).as_iter().count()
    }

    /// Returns a [`Tokens`] impl that runs the provided parser again and again, returning
    /// an output from it each time until it returns [`None`].
    ///
    /// # Example
    ///
    /// ```rust
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// fn parse_digit_pair(tokens: &mut impl Tokens<Item=char>) -> Option<u32> {
    ///     let d1 = tokens.next()?;
    ///     let d2 = tokens.next()?;
    ///     // Return the result of adding the 2 digits we saw:
    ///     Some(d1.to_digit(10)? + d2.to_digit(10)?)
    /// }
    ///
    /// let mut s = "12345abcde".into_tokens();
    /// let digits: Vec<u32> = s.many(|t| parse_digit_pair(t)).collect();
    ///
    /// assert_eq!(digits, vec![3, 7]);
    /// assert_eq!(s.remaining(), "5abcde");
    /// ```
    fn many<F, Output>(&mut self, parser: F) -> Many<Self, F>
    where
        F: FnMut(&mut Self) -> Option<Output>,
    {
        Many::new(self, parser)
    }

    /// Returns a [`Tokens`] impl that runs the provided parser again and again, returning
    /// an output from it each time until it returns [`None`]. If the parser returns an error,
    /// no tokens will be consumed and the error will be returned as the final iteration.
    ///
    /// # Example
    ///
    /// ```rust
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// #[derive(Debug, PartialEq)]
    /// enum Err { NotEnoughTokens, NotADigit(char) }
    /// fn parse_digit_pair(tokens: &mut impl Tokens<Item=char>) -> Result<u32, Err> {
    ///     let n1 = tokens.next()
    ///         .ok_or(Err::NotEnoughTokens)
    ///         .and_then(|c| c.to_digit(10).ok_or(Err::NotADigit(c)))?;
    ///     let n2 = tokens.next()
    ///         .ok_or(Err::NotEnoughTokens)
    ///         .and_then(|c| c.to_digit(10).ok_or(Err::NotADigit(c)))?;
    ///     Ok(n1 + n2)
    /// }
    ///
    /// let mut s = "12345abcde".into_tokens();
    /// let mut digits_iter = s.many_err(|t| parse_digit_pair(t));
    ///
    /// assert_eq!(digits_iter.next(), Some(Ok(3)));
    /// assert_eq!(digits_iter.next(), Some(Ok(7)));
    /// assert_eq!(digits_iter.next(), Some(Err(Err::NotADigit('a'))));
    /// assert_eq!(digits_iter.next(), None);
    /// assert_eq!(s.remaining(), "5abcde");
    /// ```
    fn many_err<F, Output, E>(&'_ mut self, parser: F) -> ManyErr<'_, Self, F>
    where
        F: FnMut(&mut Self) -> Result<Output, E>,
    {
        ManyErr::new(self, parser)
    }

    /// Ignore 0 or more instances of some parser.
    ///
    /// # Example
    ///
    /// ```rust
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// struct ABC;
    /// fn parse_abc(tokens: &mut impl Tokens<Item=char>) -> Option<ABC> {
    ///     let a = tokens.next()?;
    ///     let b = tokens.next()?;
    ///     let c = tokens.next()?;
    ///     if a == 'a' && b == 'b' && c == 'c' {
    ///         Some(ABC)
    ///     } else {
    ///         None
    ///     }
    /// }
    ///
    /// let mut s = "abcabcababab".into_tokens();
    /// s.skip_many(|t| parse_abc(t).is_some());
    ///
    /// assert_eq!(s.remaining(), "ababab");
    /// ```
    fn skip_many<F>(&mut self, mut parser: F) -> usize
    where
        F: FnMut(&mut Self) -> bool,
    {
        self.many(|t| parser(t).then_some(())).as_iter().count()
    }

    /// Ignore 1 or more instances of some parser. If the provided parser
    /// fails immediately, return the error that it produced.
    ///
    /// # Example
    ///
    /// ```rust
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// struct ABC;
    /// fn parse_abc(tokens: &mut impl Tokens<Item=char>) -> Option<ABC> {
    ///     let a = tokens.next()?;
    ///     let b = tokens.next()?;
    ///     let c = tokens.next()?;
    ///     if a == 'a' && b == 'b' && c == 'c' {
    ///         Some(ABC)
    ///     } else {
    ///         None
    ///     }
    /// }
    ///
    /// let mut s = "abcabcabcxyz".into_tokens();
    /// let skipped = s.skip_many1(|t| parse_abc(t).ok_or("aaah"));
    ///
    /// assert_eq!(skipped, Ok(3));
    /// assert_eq!(s.remaining(), "xyz");
    ///
    /// let mut s = "ababababcabc".into_tokens();
    /// let skipped = s.skip_many1(|t| parse_abc(t).ok_or("aaah"));
    ///
    /// assert_eq!(skipped, Err("aaah"));
    /// assert_eq!(s.remaining(), "ababababcabc");
    /// ```
    fn skip_many1<F, E, Ignored>(&mut self, parser: F) -> Result<usize, E>
    where
        F: FnMut(&mut Self) -> Result<Ignored, E>,
    {
        let mut toks = self.many_err(parser);
        // Return error if immediate fail:
        if let Some(Err(e)) = toks.next() {
            return Err(e);
        }
        // Else just consume whatever we can and count it all up.
        // Note: the last iteration of `many_err` will return an Error
        // and not a value, so where we'd otherwise `+1` this count to
        // account for the `iter.next()` above, we don't have to.
        let n_skipped = toks.as_iter().count();
        Ok(n_skipped)
    }

    /// Return a [`Tokens`] impl that parses anything matching the first `parser` function,
    /// and expects to parse something matching the second `separator` function between each
    /// of these.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// fn parse_digit(tokens: &mut impl Tokens<Item=char>) -> Option<u32> {
    ///     let c = tokens.next()?;
    ///     c.to_digit(10)
    /// }
    ///
    /// let mut s = "1,2,3,4,abc".into_tokens();
    /// let digits: Vec<u32> = s.sep_by(|t| parse_digit(t), |t| t.token(',')).collect();
    /// assert_eq!(digits, vec![1,2,3,4]);
    /// assert_eq!(s.remaining(), ",abc");
    /// ```
    fn sep_by<F, S, Output>(&'_ mut self, parser: F, separator: S) -> SepBy<'_, Self, F, S>
    where
        F: FnMut(&mut Self) -> Option<Output>,
        S: FnMut(&mut Self) -> bool,
    {
        SepBy::new(self, parser, separator)
    }

    /// Return a [`Tokens`] impl that parses anything matching the `parser` function, and expects
    /// to parse something matching the `separator` function between each one. Unlike [`Tokens::sep_by`],
    /// this accepts parsers that return `Result`s, and returns the result on each iteration. Once
    /// an error is hit, `None` is returned thereafter.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// #[derive(Debug, PartialEq)]
    /// enum Err { NoMoreTokens, NotADigit(char) }
    ///
    /// fn parse_digit(tokens: &mut impl Tokens<Item=char>) -> Result<u32, Err> {
    ///     let c = tokens.next().ok_or(Err::NoMoreTokens)?;
    ///     c.to_digit(10).ok_or(Err::NotADigit(c))
    /// }
    ///
    /// let mut s = "1,2,a,1,2,3".into_tokens();
    /// let mut digits_iter = s.sep_by_err(|t| parse_digit(t), |t| t.token(','));
    /// assert_eq!(digits_iter.next(), Some(Ok(1)));
    /// assert_eq!(digits_iter.next(), Some(Ok(2)));
    /// assert_eq!(digits_iter.next(), Some(Err(Err::NotADigit('a'))));
    /// assert_eq!(digits_iter.next(), None);
    /// assert_eq!(s.remaining(), ",a,1,2,3");
    /// ```
    fn sep_by_err<F, S, E, Output>(
        &'_ mut self,
        parser: F,
        separator: S,
    ) -> SepByErr<'_, Self, F, S>
    where
        F: FnMut(&mut Self) -> Result<Output, E>,
        S: FnMut(&mut Self) -> bool,
    {
        SepByErr::new(self, parser, separator)
    }

    /// Returns a [`Tokens`] impl that parses anything matching the `parser` function,
    /// and expects to parse something matching the `separator` function between each one.
    /// The [`Tokens`] impl hands back the output from both the `parser` and `separator`
    /// function, which means that they are both expected to return the same type.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// #[derive(PartialEq,Debug)]
    /// enum Op { Plus, Minus, Divide }
    /// #[derive(PartialEq,Debug)]
    /// enum OpOrDigit { Op(Op), Digit(u32) }
    ///
    /// fn parse_op(tokens: &mut impl Tokens<Item=char>) -> Option<Op> {
    ///     match tokens.next()? {
    ///         '-' => Some(Op::Minus),
    ///         '+' => Some(Op::Plus),
    ///         '/' => Some(Op::Divide),
    ///         _ => None
    ///     }
    /// }
    ///
    /// fn parse_digit(tokens: &mut impl Tokens<Item=char>) -> Option<u32> {
    ///     let c = tokens.next()?;
    ///     c.to_digit(10)
    /// }
    ///
    /// let mut s = "1+2/3-4+abc".into_tokens();
    /// let output: Vec<_> = s.sep_by_all(
    ///     |t| parse_digit(t).map(OpOrDigit::Digit),
    ///     |t| parse_op(t).map(OpOrDigit::Op)
    /// ).collect();
    ///
    /// assert_eq!(output, vec![
    ///     OpOrDigit::Digit(1),
    ///     OpOrDigit::Op(Op::Plus),
    ///     OpOrDigit::Digit(2),
    ///     OpOrDigit::Op(Op::Divide),
    ///     OpOrDigit::Digit(3),
    ///     OpOrDigit::Op(Op::Minus),
    ///     OpOrDigit::Digit(4),
    /// ]);
    /// assert_eq!(s.remaining(), "+abc");
    /// ```
    fn sep_by_all<F, S, Output>(
        &'_ mut self,
        parser: F,
        separator: S,
    ) -> SepByAll<'_, Self, F, S, Output>
    where
        F: FnMut(&mut Self) -> Option<Output>,
        S: FnMut(&mut Self) -> Option<Output>,
    {
        SepByAll::new(self, parser, separator)
    }

    /// Similar to [`Tokens::sep_by_all`], except that the [`Tokens`] impl returned also
    /// hands back the first error encountered when attempting to run our `parser`.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// #[derive(PartialEq,Debug)]
    /// enum Op { Plus, Minus, Divide }
    /// #[derive(PartialEq,Debug)]
    /// enum OpOrDigit { Op(Op), Digit(u32) }
    /// #[derive(Debug, PartialEq)]
    /// enum Err { NoMoreTokens, NotADigit(char) }
    ///
    /// fn parse_op(tokens: &mut impl Tokens<Item=char>) -> Option<Op> {
    ///     match tokens.next()? {
    ///         '-' => Some(Op::Minus),
    ///         '+' => Some(Op::Plus),
    ///         '/' => Some(Op::Divide),
    ///         _ => None
    ///     }
    /// }
    ///
    /// fn parse_digit(tokens: &mut impl Tokens<Item=char>) -> Result<u32, Err> {
    ///     let c = tokens.next().ok_or(Err::NoMoreTokens)?;
    ///     c.to_digit(10).ok_or(Err::NotADigit(c))
    /// }
    ///
    /// let mut s = "1+2/3-4+abc".into_tokens();
    /// let output: Vec<_> = s.sep_by_all_err(
    ///     |t| parse_digit(t).map(OpOrDigit::Digit),
    ///     |t| parse_op(t).map(OpOrDigit::Op)
    /// ).collect();
    ///
    /// assert_eq!(output, vec![
    ///     Ok(OpOrDigit::Digit(1)),
    ///     Ok(OpOrDigit::Op(Op::Plus)),
    ///     Ok(OpOrDigit::Digit(2)),
    ///     Ok(OpOrDigit::Op(Op::Divide)),
    ///     Ok(OpOrDigit::Digit(3)),
    ///     Ok(OpOrDigit::Op(Op::Minus)),
    ///     Ok(OpOrDigit::Digit(4)),
    ///     Err(Err::NotADigit('a'))
    /// ]);
    /// assert_eq!(s.remaining(), "+abc");
    /// ```
    fn sep_by_all_err<F, S, Output, E>(
        &'_ mut self,
        parser: F,
        separator: S,
    ) -> SepByAllErr<'_, Self, F, S, Output>
    where
        F: FnMut(&mut Self) -> Result<Output, E>,
        S: FnMut(&mut Self) -> Option<Output>,
    {
        SepByAllErr::new(self, parser, separator)
    }

    /// Parse some tokens that are optionally surrounded by the result of a `surrounding` parser.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "   hello    ".into_tokens();
    ///
    /// let hello: String = s.surrounded_by(
    ///     |t| t.take_while(|c| c.is_ascii_alphabetic()).collect(),
    ///     |t| { t.skip_while(|c| c.is_ascii_whitespace()); }
    /// );
    ///
    /// assert_eq!(&*hello, "hello");
    /// assert_eq!(s.remaining(), "");
    /// ```
    fn surrounded_by<F, S, Output>(&mut self, parser: F, mut surrounding: S) -> Output
    where
        F: FnOnce(&mut Self) -> Output,
        S: FnMut(&mut Self),
    {
        surrounding(self);
        let res = parser(self);
        surrounding(self);
        res
    }

    /// Attempt to parse some output from the tokens. Returning `None`
    /// or `false` signifies that no match was found, and no tokens will
    /// be consumed. Otherwise, we'll return the match and consume the tokens.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "foobar".into_tokens();
    ///
    /// let res = s.optional(|s| {
    ///     let a = s.next();
    ///     let b = s.next();
    ///     if a == b {
    ///         Some("yay")
    ///     } else {
    ///         None
    ///     }
    /// });
    ///
    /// // nothing consumed since None returned from fn
    /// assert_eq!(s.remaining(), "foobar");
    /// assert_eq!(res, None);
    ///
    /// let res = s.optional(|s| {
    ///     let a = s.next()?;
    ///     let b = s.next()?;
    ///     Some((a, b))
    /// });
    ///
    /// // 2 chars consumed since Some returned from fn
    /// assert_eq!(s.remaining(), "obar");
    /// assert_eq!(res, Some(('f', 'o')));
    /// ```
    fn optional<F, Output>(&mut self, f: F) -> Output
    where
        F: FnOnce(&mut Self) -> Output,
        Output: crate::one_of::IsMatch,
    {
        let location = self.location();
        if let Some(output) = f(self).into_match() {
            output
        } else {
            self.set_location(location);
            crate::one_of::IsMatch::match_failure()
        }
    }

    /// Attempt to parse some output from the tokens, returning a `Result`.
    /// If the `Result` returned is `Err`, no tokens will be consumed.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens };
    ///
    /// let mut s = "foobar".into_tokens();
    ///
    /// let res = s.optional_err(|s| {
    ///     let a = s.next();
    ///     let b = s.next();
    ///     if a == b {
    ///         Ok("yay")
    ///     } else {
    ///         Err("a and b don't match!")
    ///     }
    /// });
    ///
    /// // nothing consumed since Err returned from fn
    /// assert_eq!(s.remaining(), "foobar");
    /// assert!(res.is_err());
    ///
    /// let res = s.optional_err(|s| {
    ///     let a = s.next();
    ///     let b = s.next();
    ///     if a != b {
    ///         Ok((a, b))
    ///     } else {
    ///         Err("a and b match!")
    ///     }
    /// });
    ///
    /// // 2 chars consumed since Ok returned from fn
    /// assert_eq!(s.remaining(), "obar");
    /// assert_eq!(res, Ok((Some('f'), Some('o'))));
    /// ```
    fn optional_err<F, Output, Error>(&mut self, f: F) -> Result<Output, Error>
    where
        F: FnOnce(&mut Self) -> Result<Output, Error>,
    {
        let location = self.location();
        match f(self) {
            Ok(output) => Ok(output),
            Err(err) => {
                self.set_location(location);
                Err(err)
            }
        }
    }

    /// Checks next input is [`None`] and, if true, consumes the `None`.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::Tokens;
    /// use yap::types::IterTokens;
    /// use core::iter;
    ///
    /// // This will always return None; eof will consume it.
    /// let mut toks = IterTokens::new(iter::empty::<char>());
    ///
    /// assert_eq!(toks.eof(), true);
    /// assert_eq!(toks.offset(), 1);
    ///
    /// assert_eq!(toks.eof(), true);
    /// assert_eq!(toks.offset(), 2);
    ///
    /// // This will return a char; eof won't consume anything.
    /// let mut toks = IterTokens::new(iter::once('a'));
    ///
    /// assert_eq!(toks.eof(), false);
    /// assert_eq!(toks.offset(), 0);
    ///
    /// assert_eq!(toks.eof(), false);
    /// assert_eq!(toks.offset(), 0);
    /// ```
    fn eof(&mut self) -> bool {
        self.optional(|t| t.next().is_none().then_some(()))
            .is_some()
    }

    /// Consume all remaining tokens. This is expected to be used in conjunction
    /// with combinators like[`Tokens::take`] and [`Tokens::take_while`]. This is
    /// just a shorthand for `toks.as_iter().for_each(drop)`.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{Tokens, IntoTokens};
    ///
    /// let mut toks = "abc123def".into_tokens();
    ///
    /// // Take won't do anything unless it's consumed:
    /// toks.take(3);
    /// assert_eq!(toks.remaining(), "abc123def");
    ///
    /// // This is the same as `toks.take(3).as_iter().for_each(drop);`
    /// toks.take(3).consume();
    /// assert_eq!(toks.remaining(), "123def");
    ///
    /// toks.take_while(|t| t.is_numeric()).consume();
    /// assert_eq!(toks.remaining(), "def");
    /// ```
    fn consume(&mut self) {
        self.as_iter().for_each(drop)
    }

    /// Collect up all of the tokens into something that implements
    /// [`FromIterator`]. If you'd like to call `str::parse` on the
    /// subsequent collection, then prefer [`Tokens::parse`], which can
    /// be more optimal in some cases.
    ///
    /// This is just a shorthand for calling `toks.as_iter().collect()`.
    fn collect<B: FromIterator<Self::Item>>(&mut self) -> B {
        self.as_iter().collect()
    }
}

/// Calling [`Tokens::location()`] returns an object that implements this trait.
pub trait TokenLocation {
    /// Return the current offset into the tokens at the point at which this object
    /// was created. [`Tokens::offset()`] is simply a shorthand for calling this method
    /// at the current location.
    ///
    /// # Example
    ///
    /// ```
    /// use yap::{ Tokens, IntoTokens, TokenLocation };
    ///
    /// let mut s = "abc".into_tokens();
    /// assert_eq!(s.location().offset(), 0);
    /// s.next();
    /// assert_eq!(s.location().offset(), 1);
    /// s.next();
    /// assert_eq!(s.location().offset(), 2);
    /// ```
    fn offset(&self) -> usize;
}

/// A trait that is implemented by anything which can be converted into an
/// object implementing the [`Tokens`] trait.
pub trait IntoTokens<Item> {
    /// The type that will be used to implement the [`Tokens`] interface.
    type Tokens: Tokens<Item = Item>;
    /// Convert self into a type which implements the [`Tokens`] interface.
    fn into_tokens(self) -> Self::Tokens;
}

/// This is returned from [`Tokens::as_iter()`], and exposes the standard iterator
/// interface and methods on our tokens.
pub struct TokensAsIter<'a, T> {
    tokens: &'a mut T,
}
impl<'a, T: Tokens> Iterator for TokensAsIter<'a, T> {
    type Item = T::Item;
    fn next(&mut self) -> Option<Self::Item> {
        self.tokens.next()
    }
}

/// This is returned from [`Tokens::into_iter()`], and exposes the standard iterator
/// interface and methods on our tokens.
pub struct TokensIntoIter<T> {
    tokens: T,
}
impl<T: Tokens> Iterator for TokensIntoIter<T> {
    type Item = T::Item;
    fn next(&mut self) -> Option<Self::Item> {
        self.tokens.next()
    }
}

#[cfg(all(test, feature = "std"))]
mod test {

    use crate::types::IterTokens;

    use super::*;

    #[derive(Debug, PartialEq)]
    struct AB;

    // A simple parser that looks for "ab" in an input token stream.
    // Notably, it doesn't try to rewind on failure. We expect the `many`
    // combinators to take care of that sort of thing for us as needed.
    fn parse_ab(t: &mut impl Tokens<Item = char>) -> Option<AB> {
        // match any sequence "ab".
        let a = t.next()?;
        let b = t.next()?;
        if a == 'a' && b == 'b' {
            Some(AB)
        } else {
            None
        }
    }

    // Similar to the above, except it reports a more specific reason for
    // failure.
    fn parse_ab_err(t: &mut impl Tokens<Item = char>) -> Result<AB, ABErr> {
        // match any sequence "ab".
        let a = t.next().ok_or(ABErr::NotEnoughTokens)?;
        let b = t.next().ok_or(ABErr::NotEnoughTokens)?;

        if a != 'a' {
            Err(ABErr::IsNotA)
        } else if b != 'b' {
            Err(ABErr::IsNotB)
        } else {
            Ok(AB)
        }
    }

    #[derive(Debug, PartialEq)]
    enum ABErr {
        NotEnoughTokens,
        IsNotA,
        IsNotB,
    }

    #[test]
    fn test_tokens_fails_if_eof() {
        let mut t = "hi".into_tokens();
        assert!(!t.tokens("hip".chars()));
    }

    #[test]
    #[allow(clippy::needless_collect)]
    fn test_many() {
        // No input:
        let mut t = "".into_tokens();
        let abs: Vec<_> = t.many(parse_ab).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(abs.len(), 0);
        assert_eq!(rest, vec![]);

        // Invalid input after half is consumed:
        let mut t = "acabab".into_tokens();
        let abs: Vec<_> = t.many(parse_ab).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(abs.len(), 0);
        assert_eq!(rest, vec!['a', 'c', 'a', 'b', 'a', 'b']);

        // 3 valid and then 1 half-invalid:
        let mut t = "abababaa".into_tokens();
        let abs: Vec<_> = t.many(parse_ab).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(abs.len(), 3);
        assert_eq!(rest, vec!['a', 'a']);

        // End of tokens before can parse the fourth:
        let mut t = "abababa".into_tokens();
        let abs: Vec<_> = t.many(parse_ab).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(abs.len(), 3);
        assert_eq!(rest, vec!['a']);
    }

    #[test]
    #[allow(clippy::needless_collect)]
    fn test_many_err() {
        // No input:
        let mut t = "".into_tokens();
        let abs: Vec<_> = t.many_err(parse_ab_err).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(abs, vec![Err(ABErr::NotEnoughTokens)]);
        assert_eq!(rest, vec![]);

        // Invalid input immediately:
        let mut t = "ccabab".into_tokens();
        let abs: Vec<_> = t.many_err(parse_ab_err).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(abs, vec![Err(ABErr::IsNotA)]);
        assert_eq!(rest, vec!['c', 'c', 'a', 'b', 'a', 'b']);

        // Invalid input after half is consumed:
        let mut t = "acabab".into_tokens();
        let abs: Vec<_> = t.many_err(parse_ab_err).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(abs, vec![Err(ABErr::IsNotB)]);
        assert_eq!(rest, vec!['a', 'c', 'a', 'b', 'a', 'b']);

        // 3 valid and then 1 half-invalid:
        let mut t = "abababaa".into_tokens();
        let abs: Vec<_> = t.many_err(parse_ab_err).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(abs, vec![Ok(AB), Ok(AB), Ok(AB), Err(ABErr::IsNotB)]);
        assert_eq!(rest, vec!['a', 'a']);

        // End of tokens before can parse the fourth:
        let mut t = "abababa".into_tokens();
        let abs: Vec<_> = t.many_err(parse_ab_err).collect();
        let rest: Vec<char> = t.collect();

        assert_eq!(
            abs,
            vec![Ok(AB), Ok(AB), Ok(AB), Err(ABErr::NotEnoughTokens)]
        );
        assert_eq!(rest, vec!['a']);
    }

    #[test]
    fn test_skip_many() {
        let mut t = "".into_tokens();
        let n_skipped = t.skip_many(|t| parse_ab(t).is_some());
        let rest: Vec<char> = t.collect();
        assert_eq!(n_skipped, 0);
        assert_eq!(rest, vec![]);

        let mut t = "acabab".into_tokens();
        let n_skipped = t.skip_many(|t| parse_ab(t).is_some());
        let rest: Vec<char> = t.collect();
        assert_eq!(n_skipped, 0);
        assert_eq!(rest, vec!['a', 'c', 'a', 'b', 'a', 'b']);

        let mut t = "ababaab".into_tokens();
        let n_skipped = t.skip_many(|t| parse_ab(t).is_some());
        let rest: Vec<char> = t.collect();
        assert_eq!(n_skipped, 2);
        assert_eq!(rest, vec!['a', 'a', 'b']);
    }

    #[test]
    fn test_skip_many1() {
        let mut t = "".into_tokens();
        let res = t.skip_many1(parse_ab_err);
        let rest: String = t.collect();
        assert_eq!(res, Err(ABErr::NotEnoughTokens));
        assert_eq!(&*rest, "");

        let mut t = "acabab".into_tokens();
        let res = t.skip_many1(parse_ab_err);
        let rest: String = t.collect();
        assert_eq!(res, Err(ABErr::IsNotB));
        assert_eq!(&*rest, "acabab");

        let mut t = "abcbab".into_tokens();
        let res = t.skip_many1(parse_ab_err);
        let rest: String = t.collect();
        assert_eq!(res, Ok(1));
        assert_eq!(&*rest, "cbab");

        let mut t = "ababcbab".into_tokens();
        let res = t.skip_many1(parse_ab_err);
        let rest: String = t.collect();
        assert_eq!(res, Ok(2));
        assert_eq!(&*rest, "cbab");
    }

    #[test]
    fn test_parse_optimisations() {
        // Our test string.
        const S: &str = "345abc456";

        fn parse_slice(mut tokens: impl Tokens<Item = char>) {
            // Get a start and end location to use:
            let from = tokens.location();
            tokens.take_while(|t| t.is_numeric()).consume();
            let to = tokens.location();
            tokens.set_location(from.clone());

            // This should work (nothing will be consumed)
            let n = tokens
                .parse_slice::<u16, String>(from.clone(), to.clone())
                .unwrap();
            assert_eq!(n, 345);
            assert_eq!(tokens.collect::<String>(), S);

            // reset location
            tokens.set_location(from.clone());

            // This won't work (again nothing will be consumed)
            tokens.parse_slice::<u8, String>(from, to).unwrap_err();
            assert_eq!(tokens.collect::<String>(), S);
        }

        fn parse_take_while(mut tokens: impl Tokens<Item = char>) {
            let start = tokens.location();

            // This should work
            let n = tokens
                .parse_take_while::<u16, String, _>(|t| t.is_numeric())
                .unwrap();
            assert_eq!(n, 345);
            assert_eq!(tokens.collect::<String>(), "abc456");

            // reset location
            tokens.set_location(start);

            // This wont work and won't consume anything
            tokens
                .parse_take_while::<u8, String, _>(|t| t.is_numeric())
                .unwrap_err();
            assert_eq!(tokens.collect::<String>(), "345abc456");
        }

        fn parse_take(mut tokens: impl Tokens<Item = char>) {
            let start = tokens.location();

            // This should work
            let n = tokens.parse_take::<u16, String>(3).unwrap();
            assert_eq!(n, 345);
            assert_eq!(tokens.collect::<String>(), "abc456");

            // reset location
            tokens.set_location(start);

            // This wont work and won't consume anything
            tokens.parse_take::<u8, String>(3).unwrap_err();
            assert_eq!(tokens.collect::<String>(), "345abc456");
        }

        // Test each method against our "optimised" StrTokens
        // and also the default impl of the methods via IterTokens

        parse_slice(IterTokens::new(S.chars()));
        parse_slice(S.into_tokens());

        parse_take_while(IterTokens::new(S.chars()));
        parse_take_while(S.into_tokens());

        parse_take(IterTokens::new(S.chars()));
        parse_take(S.into_tokens());
    }
}