1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
//!64 bit version of xxhash algorithm
//!
//!Written using C implementation as reference.

use core::{ptr, slice};

use crate::xxh64_common::*;

#[inline(always)]
fn read_32le_unaligned(data: *const u8) -> u32 {
    debug_assert!(!data.is_null());

    unsafe {
        ptr::read_unaligned(data as *const u32).to_le()
    }
}

#[inline(always)]
fn read_32le_aligned(data: *const u8) -> u32 {
    debug_assert!(!data.is_null());

    unsafe {
        ptr::read(data as *const u32).to_le()
    }
}

#[inline(always)]
fn read_32le_is_align(data: *const u8, is_aligned: bool) -> u32 {
    match is_aligned {
        true => read_32le_aligned(data),
        false => read_32le_unaligned(data),
    }
}

#[inline(always)]
fn read_64le_unaligned(data: *const u8) -> u64 {
    debug_assert!(!data.is_null());

    unsafe {
        ptr::read_unaligned(data as *const u64).to_le()
    }
}

#[inline(always)]
fn read_64le_aligned(data: *const u8) -> u64 {
    debug_assert!(!data.is_null());

    unsafe {
        ptr::read(data as *const u64).to_le()
    }
}

#[inline(always)]
fn read_64le_is_align(data: *const u8, is_aligned: bool) -> u64 {
    match is_aligned {
        true => read_64le_aligned(data),
        false => read_64le_unaligned(data),
    }
}

fn finalize(mut input: u64, mut data: &[u8], is_aligned: bool) -> u64 {
    while data.len() >= 8 {
        input ^= round(0, read_64le_is_align(data.as_ptr(), is_aligned));
        data = &data[8..];
        input = input.rotate_left(27).wrapping_mul(PRIME_1).wrapping_add(PRIME_4)
    }

    if data.len() >= 4 {
        input ^= (read_32le_is_align(data.as_ptr(), is_aligned) as u64).wrapping_mul(PRIME_1);
        data = &data[4..];
        input = input.rotate_left(23).wrapping_mul(PRIME_2).wrapping_add(PRIME_3);
    }

    for byte in data.iter() {
        input ^= (*byte as u64).wrapping_mul(PRIME_5);
        input = input.rotate_left(11).wrapping_mul(PRIME_1);
    }

    avalanche(input)
}

///Returns hash for the provided input.
pub fn xxh64(mut input: &[u8], seed: u64) -> u64 {
    let input_len = input.len() as u64;
    let mut result;

    if input.len() >= CHUNK_SIZE {
        let mut v1 = seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2);
        let mut v2 = seed.wrapping_add(PRIME_2);
        let mut v3 = seed;
        let mut v4 = seed.wrapping_sub(PRIME_1);

        loop {
            v1 = round(v1, read_64le_unaligned(input.as_ptr()));
            input = &input[8..];
            v2 = round(v2, read_64le_unaligned(input.as_ptr()));
            input = &input[8..];
            v3 = round(v3, read_64le_unaligned(input.as_ptr()));
            input = &input[8..];
            v4 = round(v4, read_64le_unaligned(input.as_ptr()));
            input = &input[8..];

            if input.len() < CHUNK_SIZE {
                break;
            }
        }

        result = v1.rotate_left(1).wrapping_add(v2.rotate_left(7))
                                  .wrapping_add(v3.rotate_left(12))
                                  .wrapping_add(v4.rotate_left(18));

        result = merge_round(result, v1);
        result = merge_round(result, v2);
        result = merge_round(result, v3);
        result = merge_round(result, v4);
    } else {
        result = seed.wrapping_add(PRIME_5)
    }

    result = result.wrapping_add(input_len);

    finalize(result, input, false)
}

///XXH64 Streaming algorithm
#[derive(Clone)]
pub struct Xxh64 {
    total_len: u64,
    v1: u64,
    v2: u64,
    v3: u64,
    v4: u64,
    mem: [u64; 4],
    mem_size: u64,
}

impl Xxh64 {
    #[inline]
    ///Creates new state with provided seed.
    pub const fn new(seed: u64) -> Self {
        Self {
            total_len: 0,
            v1: seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2),
            v2: seed.wrapping_add(PRIME_2),
            v3: seed,
            v4: seed.wrapping_sub(PRIME_1),
            mem: [0, 0, 0, 0],
            mem_size: 0,
        }
    }

    ///Adds chunk of data to hash.
    pub fn update(&mut self, mut input: &[u8]) {
        self.total_len = self.total_len.wrapping_add(input.len() as u64);

        if (self.mem_size as usize + input.len()) < CHUNK_SIZE {
            unsafe {
                ptr::copy_nonoverlapping(input.as_ptr(), (self.mem.as_mut_ptr() as *mut u8).add(self.mem_size as usize), input.len())
            }
            self.mem_size += input.len() as u64;
            return
        }

        if self.mem_size > 0 {
            //previous if can fail only when we do not have enough space in buffer for input.
            //hence fill_len >= input.len()
            let fill_len = CHUNK_SIZE - self.mem_size as usize;

            unsafe {
                ptr::copy_nonoverlapping(input.as_ptr(), (self.mem.as_mut_ptr() as *mut u8).add(self.mem_size as usize), fill_len)
            }

            self.v1 = round(self.v1, self.mem[0].to_le());
            self.v2 = round(self.v2, self.mem[1].to_le());
            self.v3 = round(self.v3, self.mem[2].to_le());
            self.v4 = round(self.v4, self.mem[3].to_le());

            input = &input[fill_len..];
            self.mem_size = 0;
        }

        if input.len() >= CHUNK_SIZE {
            //In general this loop is not that long running on small input
            //So it is questionable whether we want to allocate local vars here.
            //Streaming version is likely to be used with relatively small chunks anyway.
            loop {
                self.v1 = round(self.v1, read_64le_unaligned(input.as_ptr()));
                input = &input[8..];
                self.v2 = round(self.v2, read_64le_unaligned(input.as_ptr()));
                input = &input[8..];
                self.v3 = round(self.v3, read_64le_unaligned(input.as_ptr()));
                input = &input[8..];
                self.v4 = round(self.v4, read_64le_unaligned(input.as_ptr()));
                input = &input[8..];

                if input.len() < CHUNK_SIZE {
                    break;
                }
            }
        }

        if input.len() > 0 {
            unsafe {
                ptr::copy_nonoverlapping(input.as_ptr(), self.mem.as_mut_ptr() as *mut u8, input.len())
            }
            self.mem_size = input.len() as u64;
        }
    }

    ///Finalize hashing.
    pub fn digest(&self) -> u64 {
        let mut result;

        if self.total_len >= CHUNK_SIZE as u64 {
            result = self.v1.rotate_left(1).wrapping_add(self.v2.rotate_left(7))
                                           .wrapping_add(self.v3.rotate_left(12))
                                           .wrapping_add(self.v4.rotate_left(18));

            result = merge_round(result, self.v1);
            result = merge_round(result, self.v2);
            result = merge_round(result, self.v3);
            result = merge_round(result, self.v4);
        } else {
            result = self.v3.wrapping_add(PRIME_5)
        }

        result = result.wrapping_add(self.total_len);

        let input = unsafe {
            slice::from_raw_parts(self.mem.as_ptr() as *const u8, self.mem_size as usize)
        };

        finalize(result, input, true)
    }

    #[inline]
    ///Resets state with provided seed.
    pub fn reset(&mut self, seed: u64) {
        self.total_len = 0;
        self.v1 = seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2);
        self.v2 = seed.wrapping_add(PRIME_2);
        self.v3 = seed;
        self.v4 = seed.wrapping_sub(PRIME_1);
        self.mem_size = 0;
    }
}

impl core::hash::Hasher for Xxh64 {
    #[inline(always)]
    fn finish(&self) -> u64 {
        self.digest()
    }

    #[inline(always)]
    fn write(&mut self, input: &[u8]) {
        self.update(input)
    }
}

impl Default for Xxh64 {
    #[inline(always)]
    fn default() -> Self {
        Xxh64Builder::new(0).build()
    }
}

#[derive(Clone, Copy, Default)]
///Hash builder for `Xxh64`
pub struct Xxh64Builder {
    seed: u64
}

impl Xxh64Builder {
    #[inline(always)]
    ///Creates builder with provided `seed`
    pub const fn new(seed: u64) -> Self {
        Self {
            seed
        }
    }

    #[inline(always)]
    ///Creates hasher.
    pub const fn build(self) -> Xxh64 {
        Xxh64::new(self.seed)
    }
}

impl core::hash::BuildHasher for Xxh64Builder {
    type Hasher = Xxh64;

    #[inline(always)]
    fn build_hasher(&self) -> Self::Hasher {
        self.build()
    }
}