1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use crate::wire::{DataId, WireDataId, WireError};
use byteorder::{BigEndian, ByteOrder};
use core::fmt;
use core::mem;
use static_assertions::const_assert_eq;

// TODO
// figure out the high-level types up here
//
// AsMut setters for tests
// construction related tests
// tests for all the different types/sizes, data_as_T()
// make the data_as_u8/etc generic over T: primitive int | f32 | f64, see the num crate
// consider a helper method on the wire iterator to count the packets in buffer
//
// probably need some high-level structs/types for each of the MTData2 packet types
// simple ones can just be newtypes
//   like XDI_PacketCounter, it knows it needs to call data_as_u16
// some are more complex than just primitives, like XDI_UtcTime
// others depend on the DataId's Precision like f32/f64/fixed-int

const_assert_eq!(
    MTData2Packet::<&[u8]>::MIN_WIRE_SIZE,
    mem::size_of::<u16>() + mem::size_of::<u8>()
);

#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct MTData2Packet<T: AsRef<[u8]>> {
    buffer: T,
}

impl<T: AsRef<[u8]>> fmt::Display for MTData2Packet<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}, Len({})", self.data_id(), self.data_length())
    }
}

mod field {
    use crate::wire::{Field, Rest};

    pub const DATA_ID: Field = 0..2;
    pub const LEN: usize = 2;
    pub const PAYLOAD: Rest = 3..;
}

impl<T: AsRef<[u8]>> MTData2Packet<T> {
    /// Min size, DataId, DataLen, 0 len payload
    pub const MIN_WIRE_SIZE: usize = WireDataId::<&[u8]>::WIRE_SIZE + mem::size_of::<u8>();

    pub fn new_unchecked(buffer: T) -> MTData2Packet<T> {
        MTData2Packet { buffer }
    }

    pub fn new(buffer: T) -> Result<MTData2Packet<T>, WireError> {
        let f = Self::new_unchecked(buffer);
        f.check_len()?;
        f.check_payload_length()?;
        Ok(f)
    }

    pub fn check_len(&self) -> Result<(), WireError> {
        let len = self.buffer.as_ref().len();
        if len < Self::MIN_WIRE_SIZE {
            Err(WireError::MissingBytes)
        } else {
            Ok(())
        }
    }

    pub fn check_payload_length(&self) -> Result<(), WireError> {
        let payload_len = self.data_length();
        let len = self.buffer.as_ref().len();
        if (len < Self::buffer_len(0)) || (len < Self::buffer_len(payload_len.into())) {
            Err(WireError::MissingBytes)
        } else {
            Ok(())
        }
    }

    pub fn into_inner(self) -> T {
        self.buffer
    }

    #[inline]
    pub fn header_len() -> usize {
        field::PAYLOAD.start
    }

    #[inline]
    pub fn buffer_len(n_payload_bytes: usize) -> usize {
        Self::header_len() + n_payload_bytes
    }

    #[inline]
    pub fn data_id(&self) -> DataId {
        let data = self.buffer.as_ref();
        let value = BigEndian::read_u16(&data[field::DATA_ID]);
        DataId::from(value)
    }

    #[inline]
    pub fn data_length(&self) -> u8 {
        let data = self.buffer.as_ref();
        data[field::LEN]
    }
}

impl<'a, T: AsRef<[u8]> + ?Sized> MTData2Packet<&'a T> {
    #[inline]
    pub fn payload(&self) -> &'a [u8] {
        let payload_len = self.data_length();
        let end = Self::header_len() + usize::from(payload_len);
        let data = self.buffer.as_ref();
        &data[field::PAYLOAD.start..end]
    }

    #[inline]
    pub fn data_as_u8(&self) -> Result<u8, WireError> {
        let data_len = usize::from(self.data_length());
        if data_len != mem::size_of::<u8>() {
            Err(WireError::MissingBytes)
        } else {
            let payload = self.payload();
            Ok(payload[0])
        }
    }

    #[inline]
    pub fn data_as_u16(&self) -> Result<u16, WireError> {
        let data_len = usize::from(self.data_length());
        if data_len != mem::size_of::<u16>() {
            Err(WireError::MissingBytes)
        } else {
            let payload = self.payload();
            Ok(BigEndian::read_u16(payload))
        }
    }
}

impl<T: AsRef<[u8]>> AsRef<[u8]> for MTData2Packet<T> {
    fn as_ref(&self) -> &[u8] {
        self.buffer.as_ref()
    }
}

#[derive(Debug, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct MTData2PacketIter<'a> {
    cursor: usize,
    buffer: &'a [u8],
}

impl<'a> MTData2PacketIter<'a> {
    pub(crate) fn new(buffer: &'a [u8]) -> Self {
        MTData2PacketIter { cursor: 0, buffer }
    }
}

impl<'a> Iterator for MTData2PacketIter<'a> {
    type Item = Result<MTData2Packet<&'a [u8]>, WireError>;
    fn next(&mut self) -> Option<Self::Item> {
        let payload_bytes_exhausted = self.cursor >= self.buffer.len();
        if payload_bytes_exhausted {
            None
        } else {
            match MTData2Packet::new(&self.buffer[self.cursor..]) {
                Ok(p) => {
                    self.cursor += MTData2Packet::<&[u8]>::buffer_len(usize::from(p.data_length()));
                    Some(Ok(p))
                }
                Err(e) => {
                    self.cursor = self.buffer.len();
                    Some(Err(e))
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::wire::{CoordinateSystem, DataType, Precision};
    use pretty_assertions::assert_eq;

    // DataId: 0x1020 (PacketCounter)
    // DataLen: 2
    // Value: 0x0114
    static WIRE_BYTES: [u8; 5] = [0x10, 0x20, 0x02, 0x01, 0x14];

    #[rustfmt::skip]
    static SEQ_WIRE_BYTES: [u8; 57] = [
        // UtcTime
        0x10, 0x10, 0x0C, 0x24, 0x34, 0x30, 0x40, 0x07, 0xB2, 0x01, 0x01, 0x00, 0x00, 0x11, 0x00,
        // PacketCounter
        0x10, 0x20, 0x02, 0x01, 0x14,
        // SampleTimeFine
        0x10, 0x60, 0x04, 0x00, 0x02, 0xAF, 0xCA,
        // Quaternion
        0x20, 0x34, 0x0C, 0x43, 0x32, 0x09, 0x1E, 0xC0, 0x5A, 0xBC, 0xA1, 0x42, 0xAC, 0x7F, 0x61,
        // Acceleration
        0x40, 0x20, 0x0C, 0xBD, 0x9E, 0x50, 0xD6, 0x3E, 0x0A, 0x45, 0x4B, 0x41, 0x1D, 0x60, 0x76,
    ];

    #[test]
    fn buffer_len() {
        assert_eq!(
            MTData2Packet::<&[u8]>::buffer_len(0),
            MTData2Packet::<&[u8]>::MIN_WIRE_SIZE,
        );
        assert_eq!(
            MTData2Packet::<&[u8]>::MIN_WIRE_SIZE,
            MTData2Packet::<&[u8]>::header_len()
        );
    }

    #[test]
    fn deconstruct() {
        let w = MTData2Packet::new(&WIRE_BYTES[..]).unwrap();
        assert_eq!(w.data_id(), DataId::from_data_type(DataType::PacketCounter));
        assert_eq!(w.data_length(), 2);
        let data = w.payload();
        assert_eq!(data.len(), 2);
        assert_eq!(w.data_as_u16(), Ok(0x0114));
    }

    #[test]
    fn packet_iterator() {
        let mut iter = MTData2PacketIter::new(&SEQ_WIRE_BYTES[..]).into_iter();
        let item = iter.next().unwrap();
        let p = item.unwrap();
        assert_eq!(p.data_id().data_type(), DataType::UtcTime);
        assert_eq!(p.data_length(), 12);
        let item = iter.next().unwrap();
        let p = item.unwrap();
        assert_eq!(p.data_id().data_type(), DataType::PacketCounter);
        assert_eq!(p.data_length(), 2);
        let item = iter.next().unwrap();
        let p = item.unwrap();
        assert_eq!(p.data_id().data_type(), DataType::SampleTimeFine);
        assert_eq!(p.data_length(), 4);
        let item = iter.next().unwrap();
        let p = item.unwrap();
        assert_eq!(p.data_id().data_type(), DataType::EulerAngles);
        assert_eq!(p.data_id().precision(), Precision::Float32);
        assert_eq!(p.data_id().coordinate_system(), CoordinateSystem::Ned);
        assert_eq!(p.data_length(), 12);
        let item = iter.next().unwrap();
        let p = item.unwrap();
        assert_eq!(p.data_id().data_type(), DataType::Acceleration);
        assert_eq!(p.data_id().precision(), Precision::Float32);
        assert_eq!(p.data_id().coordinate_system(), CoordinateSystem::Enu);
        assert_eq!(p.data_length(), 12);
        assert_eq!(iter.next(), None);
        assert_eq!(iter.cursor, SEQ_WIRE_BYTES.len());
    }
}